Geometric Variational Problems in Classical and Higher Rank Teichmuller theory
经典和高阶Teichmuller理论中的几何变分问题
基本信息
- 批准号:2005551
- 负责人:
- 金额:$ 54.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project has directions both in term of advancing our understanding of mathematics and in building the nation's scientific and technical workforce. The mathematical part aims to advance our understanding of the shapes that surfaces present when they are most efficiently navigating their environment. Of course, the notion of efficient depends on the context, so the project considers a number of settings, expecting to find both differences and similarities in the optimal shapes as the criteria for "best shape" are changed. In terms of education, the setting is that nation will need about a million more engineers in the coming decade than we expect the pipeline, as it is currently configured, to produce. At the same time, students from less well-resourced high schools, even if smart and hard-working and interested in a career in science, technology, engineering or mathematics, leave those STEM fields at an alarming rate, as they have trouble transitioning from high school to college. A program led by the PI has achieved notable success in cutting the attrition from STEM students of high potential but less-than-optimal preparation: the grant will help grow, sustain, develop and disseminate information about this comprehensive holistic approach to retention of students in STEM. The project will investigate, via harmonic maps, the asymptotic holonomy of surface group representations in the Hitchin component of several low rank Lie groups. The equivariant harmonic maps from surfaces to the associated symmetric spaces have holomorphic invariants, the geometric topology of which can predict the holonomy of the representation, up to a decaying error. At the same time, the error estimates are strong enough to suggest a unity of approaches: a rescaling of the range and the maps produces a harmonic map to a building, while an apparently different building may be constructed algebraically via an associated real closed field and a valuation. Other projects include finding a new basic minimal surface in three-space through moduli space techniques, a new type of uniformized metric through geometric analytic techniques, and a refinement of a classical circle-packing result on surfaces. The PI will continue his mentorship of undergraduates, graduate students, and postdoctoral scholars.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目在促进我们对数学的理解和建立国家科学和技术劳动力方面都有指示。该数学部分旨在提高我们对最有效地导航环境时表面形状的理解。当然,有效的概念取决于上下文,因此项目考虑了许多设置,希望在最佳形状中发现差异和相似之处,因为“最佳形状”的标准会改变。 在教育方面,这里的环境是,在未来十年中,国家将需要比我们预期的,该工程师比目前配置的管道要多得多。同时,来自资源较低的高中的学生,即使聪明,勤奋并对科学,技术,工程或数学的职业感兴趣,也以惊人的速度离开了这些STEM领域,因为他们很难从高中过渡到大学。由PI领导的计划在减少具有高潜力但不太理想的准备工作的STEM学生的流失方面取得了显着的成功:该赠款将有助于成长,维持,发展,发展和传播有关这种全面的整体方法来保留STEM中学生的信息。 该项目将通过谐波图研究在几个低等级谎言基团的Hitchin组分中表面组表示的渐近尸体。从表面到相关的对称空间的模棱两可的谐波图具有全体形态不变性,其几何拓扑可以预测代表的载体,直到衰减误差。 同时,错误估计值足够强,可以提出一种方法的统一性:对范围和地图的重新缩放为建筑物产生谐波图,而显然不同的建筑物可以通过相关的实际封闭场和估值来代数构造。其他项目包括通过模量空间技术在三个空间中找到一个新的基本最小表面,通过几何分析技术的新型统一度量度量,以及对表面上经典圆圈包装的改进。 PI将继续他对本科生,研究生和博士后学者的指导。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估的评估来支持的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
HIGGS BUNDLES, HARMONIC MAPS, AND PLEATED SURFACES
希格斯束、调和图和褶皱表面
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Ott, Andreas;Swoboda, Jan;Wentworth, Richard;Wolf, Michael
- 通讯作者:Wolf, Michael
PLATEAU PROBLEMS FOR MAXIMAL SURFACES IN PSEUDO-HYPERBOLIC SPACE
伪双曲空间中最大曲面的平台问题
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Labourie, Francois;Toulisse, Jeremy;Wolf, Michael
- 通讯作者:Wolf, Michael
PLANAR MINIMAL SURFACES WITH POLYNOMIAL GROWTH IN THE Sp(4,R)-SYMMETRIC SPACE
Sp(4,R)对称空间中多项式增长的平面极小曲面
- DOI:
- 发表时间:2025
- 期刊:
- 影响因子:1.7
- 作者:Tamburelli, Andrea;Wolf, Michael
- 通讯作者:Wolf, Michael
共 3 条
- 1
Michael Wolf其他文献
Infrared vertical external cavity surface emitting laser threshold quantum magnetometer
红外垂直外腔面发射激光阈值量子磁力计
- DOI:
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Nathan S. Gottesman;Michael A. Slocum;Gary A. Sevison;Michael Wolf;M. Lukowski;C. Hessenius;Mahmoud Fallahi;Robert G. BedfordNathan S. Gottesman;Michael A. Slocum;Gary A. Sevison;Michael Wolf;M. Lukowski;C. Hessenius;Mahmoud Fallahi;Robert G. Bedford
- 通讯作者:Robert G. BedfordRobert G. Bedford
Anisotropic neural deblurring for MRI acceleration
用于 MRI 加速的各向异性神经去模糊
- DOI:10.1007/s11548-021-02535-610.1007/s11548-021-02535-6
- 发表时间:20212021
- 期刊:
- 影响因子:3
- 作者:Maya Mayberg;M. Green;Mark Vasserman;D. Raichman;Eugenia A Belenky;Michael Wolf;S. Shrot;N. Kiryati;E. Konen;Arnaldo MayerMaya Mayberg;M. Green;Mark Vasserman;D. Raichman;Eugenia A Belenky;Michael Wolf;S. Shrot;N. Kiryati;E. Konen;Arnaldo Mayer
- 通讯作者:Arnaldo MayerArnaldo Mayer
Die Anatomie des Beckenbodens
贝肯博登解剖学
- DOI:10.1055/a-2068-283410.1055/a-2068-2834
- 发表时间:20232023
- 期刊:
- 影响因子:0
- 作者:Michael WolfMichael Wolf
- 通讯作者:Michael WolfMichael Wolf
The plumbing of minimal area surfaces
最小面积表面的管道
- DOI:
- 发表时间:19941994
- 期刊:
- 影响因子:0
- 作者:Michael Wolf;B. ZwiebachMichael Wolf;B. Zwiebach
- 通讯作者:B. ZwiebachB. Zwiebach
An embedded genus-one helicoid.
嵌入的一属螺旋面。
- DOI:
- 发表时间:20042004
- 期刊:
- 影响因子:11.1
- 作者:Matthias J. Weber;D. Hoffman;Michael WolfMatthias J. Weber;D. Hoffman;Michael Wolf
- 通讯作者:Michael WolfMichael Wolf
共 90 条
- 1
- 2
- 3
- 4
- 5
- 6
- 18
Michael Wolf的其他基金
Recent Developments on Geometric Measure Theory and its Applications
几何测度理论及其应用的最新进展
- 批准号:20010952001095
- 财政年份:2020
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Standard GrantStandard Grant
Creating technical leaders from early collegians of exceptional promise: a comprehensive program for demolishing barriers to persistence.
从具有杰出前途的早期大学生中培养技术领导者:消除持久障碍的综合计划。
- 批准号:15650321565032
- 财政年份:2016
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Standard GrantStandard Grant
FRG: Collaborative Research: Geometric Structures of Higher Teichmuller Spaces
FRG:合作研究:高等Teichmuller空间的几何结构
- 批准号:15643741564374
- 财政年份:2016
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Continuing GrantContinuing Grant
The Fifth Ahlfors-Bers Colloquium (2011)
第五届 Ahlfors-Bers 研讨会 (2011)
- 批准号:11015951101595
- 财政年份:2011
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Standard GrantStandard Grant
Teichmuller theory and Low-Dimensional Geometric Variational Problems
Teichmuller理论和低维几何变分问题
- 批准号:10073831007383
- 财政年份:2010
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Standard GrantStandard Grant
Teichmuller Theory and Low-Dimensional Geometric Variational Problems
Teichmuller 理论和低维几何变分问题
- 批准号:05056030505603
- 财政年份:2005
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Continuing GrantContinuing Grant
Vertical Integration of Research and Education in the Mathematical Sciences
数学科学研究与教育的垂直整合
- 批准号:02400580240058
- 财政年份:2003
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: FRG: Minimal Surfaces, Moduli Spaces, and Computation
合作研究:FRG:最小曲面、模空间和计算
- 批准号:01398870139887
- 财政年份:2002
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Standard GrantStandard Grant
RUI: Halogens in Granitic Systems
RUI:花岗岩系统中的卤素
- 批准号:99021859902185
- 财政年份:1999
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Standard GrantStandard Grant
Teichmuller Theory and Geometric Variational Problems
Teichmuller 理论和几何变分问题
- 批准号:99715639971563
- 财政年份:1999
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
体积泛函和Willmore泛函的几何变分问题
- 批准号:12271069
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
几何变分问题解的奇点集的研究
- 批准号:12271195
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
变分方法与辛几何理论在N体问题中的应用
- 批准号:12101394
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
变分方法与辛几何理论在N体问题中的应用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
黎曼几何中的若干分析与变分问题及相关应用
- 批准号:
- 批准年份:2020
- 资助金额:247 万元
- 项目类别:重点项目
相似海外基金
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:23036242303624
- 财政年份:2023
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Standard GrantStandard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:DE230100415DE230100415
- 财政年份:2023
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Discovery Early Career Researcher AwardDiscovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
- 批准号:23044322304432
- 财政年份:2023
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Standard GrantStandard Grant
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:21431242143124
- 财政年份:2022
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Continuing GrantContinuing Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:RGPIN-2020-06826RGPIN-2020-06826
- 财政年份:2022
- 资助金额:$ 54.07万$ 54.07万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual