Cyclotomic Spectra and p-Divisible Groups
分圆谱和 p-可分群
基本信息
- 批准号:2005316
- 负责人:
- 金额:$ 41.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in the foundations of category theory and homotopy theory have led to an explosion of work and new insights into disparate fields ranging from algebraic geometry and number theory to the study of field theories in physics. The areas of the major advances are abstract: category theory is a framework for organizing different types of mathematical objects and admissible transformations between these types, while homotopy theory seeks to understand the coarse nature of shapes. The applications on the other hand include new results on the geometry and solutions of polynomial equations, important areas of research with concrete applications inside and outside of mathematics. The present proposal will harness these advances in the areas of algebraic K-theory, which is a mysterious but powerful tool for counting mathematical objects, and arithmetic geometry, which is about the influence of geometry on the structure of solutions of polynomial equations with rational coordinates. The project provides research training opportunities for graduate students and postdoctoral fellows.The project's three main objectives are (1) to directly compare the motivic and syntomic approaches to p-adic etale K-theory by showing that if R is a smooth commutative p-local commutative ring, then the trace map from K-theory to topological cyclic homology respects the motivic and syntomic filtrations after p-completion, (2) to construct a theory of coefficient systems for p-adic cohomology using cyclotomic spectra and to verify the PI's liftability conjecture, which will help to explain the relationship between the window-frame approach to the classification of formal groups and the recent prismatic Dieudonne theory developed by Anschuetz and Le Bras, and (3) to understand the filtration on prismatic cohomology arising from the cyclotomic t-structure. Short master classes will be offered for graduate students and postdoctoral researchers that each focus on a single current issue in algebraic K-theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
类别理论和同义理论基础的最新进展导致工作爆炸和对不同领域的新见解,从代数几何和数字理论到物理学领域理论的研究。主要进步的领域是抽象的:类别理论是组织不同类型的数学对象和这些类型之间可接受的转换的框架,而同型理论试图理解形状的粗糙本质。另一方面,应用程序包括有关多项式方程的几何形状和解决方案的新结果,重要的研究领域具有数学内部和外部的混凝土应用。 目前的建议将利用这些进步在代数K理论的领域,这是计算数学对象的神秘但有力的工具,以及算术几何形状,这是关于几何学对多种方程式结构的影响多项式方程的影响。该项目为研究生和博士后研究员提供了研究培训机会。该项目的三个主要目标是(1)直接比较P-Adic eTale K理论的动机和构成方法,如果R是平稳的P-Plocal plocal pollocal polmutighative Ring,则来自K理论的痕量痕量与拓扑循环型的TOPEATION CORTICTION和TOPICTICS TORIPATION和TOPETICTION AD-CORTIT AD-CORTIC ARTICATION(P)相关(P) coefficient systems for p-adic cohomology using cyclotomic spectra and to verify the PI's liftability conjecture, which will help to explain the relationship between the window-frame approach to the classification of formal groups and the recent prismatic Dieudonne theory developed by Anschuetz and Le Bras, and (3) to understand the filtration on prismatic cohomology arising from the cyclotomic t-structure.将为研究生和博士后研究人员提供简短的大师班,每个研究人员都专注于代数K理论中的单个当前问题。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的审查标准通过评估来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
David Antieau的其他基金
Conference: IHES 2023 Summer School: Recent advances in algebraic K-theory
会议:IHES 2023 暑期学校:代数 K 理论的最新进展
- 批准号:23047232304723
- 财政年份:2023
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Standard GrantStandard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:21522352152235
- 财政年份:2022
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Standard GrantStandard Grant
CAREER: Higher Brauer Groups and Topological Azumaya Algebras
职业:高等布劳尔群和拓扑 Azumaya 代数
- 批准号:21200052120005
- 财政年份:2021
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Continuing GrantContinuing Grant
Cyclotomic Spectra and p-Divisible Groups
分圆谱和 p-可分群
- 批准号:21020102102010
- 财政年份:2020
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Standard GrantStandard Grant
CAREER: Higher Brauer Groups and Topological Azumaya Algebras
职业:高等布劳尔群和拓扑 Azumaya 代数
- 批准号:15527661552766
- 财政年份:2016
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Continuing GrantContinuing Grant
Topological methods for Azumaya algebras
Azumaya 代数的拓扑方法
- 批准号:14618471461847
- 财政年份:2014
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Standard GrantStandard Grant
Topological methods for Azumaya algebras
Azumaya 代数的拓扑方法
- 批准号:13075051307505
- 财政年份:2013
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Standard GrantStandard Grant
Topological methods for Azumaya algebras
Azumaya 代数的拓扑方法
- 批准号:13588321358832
- 财政年份:2013
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
水泥生料氧化物含量的近红外光谱在线分析方法研究
- 批准号:62303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原位拉曼光谱解析单原子催化剂的电化学析氧机制
- 批准号:22302184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于温度调制的重金属废水多组分光谱长效在线检测方法
- 批准号:62303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
梯度介电常数近零复合材料的构筑与宽光谱发射率的电子声子协同调控
- 批准号:52371139
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于无人机和卫星雷达光谱遥感的玉米倒伏灾害智能监测评估方法研究
- 批准号:32371992
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Comparative Study of the High Harmonic Spectra of Transition Metal Compounds
过渡金属化合物高次谐波谱的比较研究
- 批准号:23093212309321
- 财政年份:2023
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Standard GrantStandard Grant
Conference: Groups of dynamical origin, automata and spectra
会议:动力学起源、自动机和谱组
- 批准号:23095622309562
- 财政年份:2023
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Standard GrantStandard Grant
Research on High-Precision Real-Gas Aerodynamics Prediction Technique Using High-Speed Vacuum Ultraviolet Absorption Spectra Fitting Method
高速真空紫外吸收光谱拟合法高精度真气气动预测技术研究
- 批准号:23H0161323H01613
- 财政年份:2023
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Fast, Cost-Effective and Fully Automated Structure Verification through Synergistic Use of Infrared and NMR Spectra
通过红外和核磁共振光谱的协同使用进行快速、经济高效的全自动结构验证
- 批准号:28942032894203
- 财政年份:2023
- 资助金额:$ 41.73万$ 41.73万
- 项目类别:StudentshipStudentship
Alpha-emitter Imaging for Dosimetry and Treatment Planning
用于剂量测定和治疗计划的阿尔法发射体成像
- 批准号:1071371010713710
- 财政年份:2023
- 资助金额:$ 41.73万$ 41.73万
- 项目类别: