Collaborative Research: Framework: Improving the Understanding and Representation of Atmospheric Gravity Waves using High-Resolution Observations and Machine Learning
合作研究:框架:利用高分辨率观测和机器学习提高对大气重力波的理解和表示
基本信息
- 批准号:2004492
- 负责人:
- 金额:$ 118.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Geophysical gravity waves are a ubiquitous phenomenon in Earth’s atmosphere and ocean, made possible by the interaction of gravity with a stratified, or layered fluid. They are excited in the atmosphere when winds flow over mountains, by thunderstorms and other strong convective systems, and when winter storms intensify. Gravity waves play an important role in the momentum and energy balance of the atmosphere, with direct impacts on surface weather and climate through their effect on the variability of key features of the climate system such as the jet streams and stratospheric polar vortices. These waves present a challenge to weather and climate prediction: waves on scales of 100 meters to 100 kilometers can neither be systematically measured with conventional observational systems, nor properly resolved in global atmospheric models. As a result, these waves must be represented, or approximated, based on the resolved flow that can be directly simulated. Current representations of gravity waves are severely limited by computational necessity and the scarcity of observations, leading to inaccuracies or uncertainties in short term weather and long term climate predictions. The objective of this project is to leverage unprecedented observations from Loon high altitude balloons and use specialized high resolution computer simulations and machine learning techniques to develop accurate, data-informed representation of gravity waves. The outcomes of this project are expected to result in better weather and climate models, thus improving short term forecasts of weather extremes and long term climate change projections, which have substantial societal benefits. Furthermore, the project will support the training of 3 Ph.D. students, 4 postdocs, and 10 undergraduate summer researchers to work at the intersection of atmospheric dynamics, climate modeling, and data science, thus preparing the next generation of scientists for interdisciplinary careers.The project will deliver two key advances. First, it will open up a new data source to constrain gravity wave momentum transport in the atmosphere. Loon LLC has been launching super pressure balloons since 2013 to provide global internet coverage. Very high resolution position, temperature, and pressure observations (taken every 60 seconds) are available from thousands of flights. This provides an unprecedented source of high resolution observations to constrain gravity wave sources and propagation. The project will process the balloon measurements and, in concert with novel high resolution simulations, establish a publicly available dataset to open up a potentially transformational resource for observationally constrained assessment of gravity wave sources, propagation, and breaking. The second transformation will be using machine learning techniques to develop computationally feasible representations of momentum deposition by gravity waves. Current physics-based representations only account for vertical propagation of the waves (i.e., they are one dimensional) and ignore their horizontal propagation. Using the data based on the Loon measurements and high resolution models, one and three dimensional data driven representations will be developed to more accurately and efficiently represent the effects of gravity waves in weather and climate models. These novel representations will be implemented in idealized atmospheric models to study the role of gravity waves in the variability of the extratropical jet streams, the Quasi Biennial Oscillation (a slow variation of the winds in the tropical stratosphere) and the polar vortex of the winter stratosphere, enabling better understanding their response to increased atmospheric greenhouse gas concentrations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球物质波是大气和海洋,通过分层或分层流体的相互作用使它们在大气中激发,而雷暴和其他强的对流系统以及冬季暴风雨来加剧。气候系统的关键特征的可变性,例如喷气流和地层极性涡流,这些波浪对天气和气候预测构成了挑战:100米至100公里的尺度上的波可以通过常规观察系统来测量100米至100公里结果,必须代表这些波浪或近似的直接模拟的代表。 G。夏季研究人员在大气动态,气候建模和数据科学的交集中工作,从而为跨学科职业的下一个科学家准备。 LLC自2013年以来一直在提供全球互联网(每60秒)。为波浪源的观察量评估和破坏的第二个转换愿意,将机器学习技术用于发育可行的代表,从基于数据的测量值和tigh分辨率模型可以充实地表示这些新型的seric模型中的重力波。冬天更好地理解了他们的呼应。该奖项反映了NSF'Stututs值得通过使用Toundatual功绩和ER影响审查标准的评估来获得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Updates on Model Hierarchies for Understanding and Simulating the Climate System: A Focus on Data‐Informed Methods and Climate Change Impacts
- DOI:10.1029/2023ms003715
- 发表时间:2023-10
- 期刊:
- 影响因子:6.8
- 作者:Laura A. Mansfield;Aman Gupta;A. Burnett;B. Green;C. Wilka;Aditi Sheshadri
- 通讯作者:Laura A. Mansfield;Aman Gupta;A. Burnett;B. Green;C. Wilka;Aditi Sheshadri
Calibration and Uncertainty Quantification of a Gravity Wave Parameterization: A Case Study of the Quasi‐Biennial Oscillation in an Intermediate Complexity Climate Model
- DOI:10.1029/2022ms003245
- 发表时间:2022-10
- 期刊:
- 影响因子:6.8
- 作者:L. Mansfield;A. Sheshadri
- 通讯作者:L. Mansfield;A. Sheshadri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aditi Sheshadri其他文献
Gravity wave momentum fluxes estimated from Project Loon balloon data
根据 Project Loon 气球数据估算的重力波动量通量
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
B. Green;Aditi Sheshadri;M. J. Alexander;M. Bramberger;Fran¸cois Lott - 通讯作者:
Fran¸cois Lott
Bayesian History Matching Applied to the Calibration of a Gravity Wave Parameterization
贝叶斯历史匹配应用于重力波参数化校准
- DOI:
10.1029/2023ms004163 - 发表时间:
2024 - 期刊:
- 影响因子:6.8
- 作者:
Robert C King;Laura A. Mansfield;Aditi Sheshadri - 通讯作者:
Aditi Sheshadri
Machine Learning Global Simulation of Nonlocal Gravity Wave Propagation
非局域重力波传播的机器学习全局模拟
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aman Gupta;Aditi Sheshadri;Sujit Roy;Vishal Gaur;M. Maskey;Rahul Ramachandran - 通讯作者:
Rahul Ramachandran
Machine Learning Gravity Wave Parameterization 1 Generalizes to Capture the QBO and Response to 2 Increased CO 2 3
机器学习重力波参数化 1 概括为捕获 QBO 和对 2 二氧化碳增加的响应 2 3
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zachary I. Espinosa;Aditi Sheshadri;G. Cain;E. Gerber;K. DallaSanta - 通讯作者:
K. DallaSanta
Aditi Sheshadri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aditi Sheshadri', 18)}}的其他基金
Collaborative Research: Revisiting the Low-Frequency Variability of the Extratropical Circulation Using Non-Empirical Orthogonal Function (EOF) Modes and Linear Response Functions
合作研究:使用非经验正交函数 (EOF) 模式和线性响应函数重新审视温带环流的低频变化
- 批准号:
1921409 - 财政年份:2019
- 资助金额:
$ 118.99万 - 项目类别:
Standard Grant
相似国自然基金
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
- 批准号:61571362
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
- 批准号:61571033
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
- 批准号:61401510
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
协作性公共管理视角下的草原碳汇管理框架设计及应用研究
- 批准号:71363039
- 批准年份:2013
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
相似海外基金
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 118.99万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 118.99万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 118.99万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342747 - 财政年份:2024
- 资助金额:
$ 118.99万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 118.99万 - 项目类别:
Continuing Grant