Collaborative Research: Frameworks: The Einstein Toolkit ecosystem: Enabling fundamental research in the era of multi-messenger astrophysics
合作研究:框架:爱因斯坦工具包生态系统:在多信使天体物理学时代实现基础研究
基本信息
- 批准号:2004311
- 负责人:
- 金额:$ 33.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A team of experts from five institutions (University of Illinois Urbana-Champaign, Georgia Institute of Technology, Rochester Institute of Technology, Louisiana State University, and West Virginia University) are collaborating on further development of the Einstein Toolkit, a community-driven, open-source cyberinfrastructure ecosystem providing computational tools supporting research in computational astrophysics, gravitational physics, and fundamental science. The new tools address current and future challenges in gravitational wave source modeling, improve the scalability of the code base, and support an expanded science and user community around the Einstein Toolkit.The Einstein Toolkit is a community-driven suite of research-grade Python codes for performing astrophysics and gravitational wave calculations. The code is open-source, accessible via Conda (an open source package management system) and represents a long-term investment by NSF in providing such computational infrastructure. The software is designed to simulate compact binary stars as sources of gravitational waves. This project focuses on the sustainability of the Einstein Toolkit; specific research efforts center around the development of three new software capabilities for the toolkit: • CarpetX -- a new mesh refinement driver and interface between AMReX, a software framework containing the functionality to write massively parallel block-structured adaptive mesh refinement (AMR) code, and Cactus, a framework for building a variety of computing applications in science and engineering;• NRPy+ -- a user-friendly code generator based on Python; and • Canuda -- a new physics library to probe fundamental physics. Integration of graphics processing units (GPUs) will incorporate modern heterogeneous computing devices into the system and will enhance the capability of the toolkit. The end product is sustainable through integration into the Einstein Toolkit, yet also includes an active community maintaining and enhancing the foundational components. Broader impacts are enhanced through training, documentation and a support infrastructure that reduces the barrier to adoption by the community. The team is also creating a science portal with additional educational and showcase resources. This award by the Office of Advanced Cyberinfrastructure is jointly supported by the National Science Foundation's Big Idea activities in Windows on the Universe (WoU).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
A team of experts from five institutions (University of Illinois Urbana-Champaign, Georgia Institute of Technology, Rochester Institute of Technology, Louisiana State University, and West Virginia University) are collaborating on further development of the Einstein Toolkit, a community-driven, open-source cyberinfrastructure ecosystem providing computational tools supporting research in computational astrophysics, gravitational physics, and fundamental 科学。新工具解决了引力波源建模中的当前和未来挑战,提高代码库的可扩展性,并支持Einstein Toolkit周围扩展的科学和用户社区。EinsteinToolkit是一套由社区驱动的研究级Python代码,用于执行天体物理学和重力波浪计算。该代码是开源的,可以通过CONDA(开源软件包管理系统)访问,并代表NSF在提供此类计算基础架构时的长期投资。该软件旨在模拟紧凑型二进制恒星作为引力波的来源。该项目着重于爱因斯坦工具包的可持续性; specific research efforts center around the development of three new software capabilities for the toolkit: • CarpetX -- a new mesh refinement driver and interface between AMReX, a software framework containing the functionality to write massively parallel block-structured adaptive mesh refinement (AMR) code, and Cactus, a framework for building a variety of computing applications in science and engineering;• NRPy+ -- a user-friendly code generator based on Python; •Canuda-一个新的物理库来探测基本物理学。图形处理单元(GPU)的集成将将现代异质计算设备纳入系统,并将增强工具包的能力。最终产品通过将其集成到爱因斯坦工具包中是可持续的,但还包括一个积极的社区来维护和增强基础组件。通过培训,文档和支持基础设施减少社区采用障碍,从而增强了更大的影响。该团队还创建了一个具有额外教育和展示资源的科学门户网站。美国高级网络基础设施办公室的奖项得到了国家科学基金会在宇宙Windows(WOU)中的重大思想活动(WOU)共同支持。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响标准通过评估来诚实地支持支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Initial data and eccentricity reduction toolkit for binary black hole numerical relativity waveforms
- DOI:10.1088/1361-6382/abe691
- 发表时间:2020-11
- 期刊:
- 影响因子:3.5
- 作者:Sarah Habib;A. Ramos-Buades;Eliu Huerta;S. Husa;R. Haas;Z. Etienne
- 通讯作者:Sarah Habib;A. Ramos-Buades;Eliu Huerta;S. Husa;R. Haas;Z. Etienne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachariah Etienne其他文献
Zachariah Etienne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachariah Etienne', 18)}}的其他基金
Collaborative Research: Measuring G with a Magneto-Gravitational Trap
合作研究:用磁引力阱测量 G
- 批准号:
2227079 - 财政年份:2022
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
- 批准号:
2227080 - 财政年份:2022
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
- 批准号:
2108072 - 财政年份:2021
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Boosting Algorithmic Efficiency: Numerical Relativity in Dynamical, Curvilinear Coordinates
提高算法效率:动态曲线坐标中的数值相对论
- 批准号:
2110352 - 财政年份:2021
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: The Einstein Toolkit ecosystem: Enabling fundamental research in the era of multi-messenger astrophysics
合作研究:框架:爱因斯坦工具包生态系统:在多信使天体物理学时代实现基础研究
- 批准号:
2227105 - 财政年份:2021
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Collaborative Research: Measuring G with a Magneto-Gravitational Trap
合作研究:用磁引力阱测量 G
- 批准号:
2011817 - 财政年份:2020
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Boosting Algorithmic Efficiency: Numerical Relativity in Dynamical, Curvilinear Coordinates
提高算法效率:动态曲线坐标中的数值相对论
- 批准号:
1806596 - 财政年份:2018
- 资助金额:
$ 33.59万 - 项目类别:
Continuing Grant
Collaborative Research: Measuring G with a Microsphere in a Magneto-Gravitational Trap
合作研究:用磁引力阱中的微球测量 G
- 批准号:
1707678 - 财政年份:2017
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Speeding Up the Spinning, Precessing Effective One-Body--Numerical Relativity (SEOBNRv3) Code by ~10,000x
将旋转、进动有效一体数值相对论 (SEOBNRv3) 代码加速约 10,000 倍
- 批准号:
1607405 - 财政年份:2016
- 资助金额:
$ 33.59万 - 项目类别:
Continuing Grant
General Relativistic, Radiative Magnetohydrodynamic Simulations of Compact Binary Mergers
紧凑二元合并的广义相对论、辐射磁流体动力学模拟
- 批准号:
1002667 - 财政年份:2010
- 资助金额:
$ 33.59万 - 项目类别:
Fellowship Award
相似国自然基金
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
- 批准号:22204104
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
- 批准号:61571362
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
- 批准号:61571033
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
- 批准号:61401510
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant