CDS&E: Collaborative Research: Private Data Analytics Synthesis, and Sharing for Large-Scale Multi-Modal Smart City Mobility Research

CDS

基本信息

  • 批准号:
    2003874
  • 负责人:
  • 金额:
    $ 33.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Given the trend towards urbanization, understanding real-time human mobility in urban areas has become increasingly important for many research areas from Mobile Networking, to Transportation/Urban Planning, Behavior Modeling, Emergency Response, to recent Pandemic Mitigation. Many analytical models have been proposed to understand human mobility based on mobility data. However, most of these data are proprietary and cannot be accessed by the research community at large. Fortunately, based on the latest expansion of urban infrastructures, such mobility data has been collected by city government agencies and some companies that are willing to share the data for social good. However, a key challenge is the privacy concern since such data usually have sensitive information and system design details for potential privacy and security issues. To address this issue, the project aims to generate realistic yet synthetic mobility data through machine learning based on the real mobility data analytics and then share these realistic synthetic data with the research community. The objective of the project is to lower the entry barriers for interdisciplinary researchers in mobility data-intensive research aimed at addressing major scientific/societal challenges related to urban mobility.The core merit of the project lies in integrating two aims, i.e., privacy-preserving data synthesis and data integration, for large-scale smart city mobility research. For the first research aim, the project plans to utilize recent advances in Generative Adversarial Networks (GANs) to enable large-scale mobility data synthesis. The goal is to achieve the individual-level release of realistic synthetic mobility data by GAN-based models targeting key characteristics of human mobility. The GAN architecture proposed has novel technical components to augment basic GAN frameworks, which optimize the fundamental trade-off between privacy (regarding removing/obfuscating sensitive mobility features) and utility (in terms of preserving non-sensitive mobility features) with long-range dependencies (in terms of repeated mobility patterns) revealed. For the second research aim, the PIs plans to perform multi-modal data integration based on aligned multi-tensor decomposition under mobility semantics. The technical approach proposed is to enable multi-modal data integration based on synthetic single-modal data for comprehensive mobility modeling with a set of machine learning techniques including novel mobility semantic learning and multi-tensor decomposition with aligned spatiotemporal granularity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鉴于城市化的趋势,了解城市地区的实时人类流动性对于从移动网络到运输/城市规划,行为建模,应急响应再到最近大流行缓解的许多研究领域的实时人类流动性变得越来越重要。已经提出了许多分析模型,以理解基于移动性数据的人类流动性。但是,这些数据中的大多数都是专有的,研究界无法访问。幸运的是,根据城市基础设施的最新扩展,这类出行数据是由市政府机构和一些愿意以社会利益共享数据的公司收集的。但是,一个主要的挑战是隐私问题,因为此类数据通常具有敏感的信息和系统设计细节,以解决潜在的隐私和安全问题。为了解决这个问题,该项目旨在通过机器学习基于实际移动性数据分析来生成现实但合成的移动性数据,然后与研究社区共享这些现实的合成数据。该项目的目的是降低跨学科研究人员在流动性数据密集型研究中的进入障碍,旨在应对与城市流动性相关的主要科学/社会挑战。该项目的核心优点在于将两个目标集成,即具有隐私性的具有隐私性数据综合和数据整合的目标,以实现大型智能城市流动性研究。对于第一个研究目的,该项目计划利用生成对抗网络(GAN)的最新进展来实现大规模的移动性数据综合。目的是通过针对人类移动性的关键特征的基于GAN的模型来实现现实合成移动性数据的个体释放。拟议的GAN架构具有新颖的技术组件来增强基本的GAN框架,从而优化了隐私之间的基本权衡(有关删除/混淆敏感的移动性功能)和实​​用程序(就保留不敏感的移动性特征而言),以长期依赖性(在重复的移动性模式方面)揭示了隐私框架。对于第二个研究目的,PIS计划基于在移动性语义下基于对齐的多张量分解进行多模式数据集成。提出的技术方法是基于合成单模式数据启用多模式数据的整合,以通过一组机器学习技术进行全面的移动性建模,包括新型流动性语义学习和多张tensor分解,并具有一致的时空粒度性。这一奖项反映了NSF的法定任务和综述的依据,这是通过评估的范围来进行的。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Fairness-Aware Vehicle Displacement for Large-Scale Electric Taxi Fleets
MoCha: Large-Scale Driving Pattern Characterization for Usage-based Insurance
MoCha:基于使用的保险的大规模驾驶模式表征
TransRisk: Mobility Privacy Risk Prediction based on Transferred Knowledge
TransRisk:基于转移知识的移动隐私风险预测
  • DOI:
    10.1145/3534581
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xie, Xiaoyang;Hong, Zhiqing;Qin, Zhou;Fang, Zhihan;Tian, Yuan;Zhang, Desheng
  • 通讯作者:
    Zhang, Desheng
Towards Accessible Shared Autonomous Electric Mobility With Dynamic Deadlines
  • DOI:
    10.1109/tmc.2022.3213125
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Guang Wang;Zhou Qin;Shuai Wang;Huijun Sun;Zheng Dong;Desheng Zhang
  • 通讯作者:
    Guang Wang;Zhou Qin;Shuai Wang;Huijun Sun;Zheng Dong;Desheng Zhang
RLIFE: Remaining Lifespan Prediction for E-scooters
共 11 条
  • 1
  • 2
  • 3
前往

Desheng Zhang其他文献

Vortex suppression of the tip leakage flow over a NACA0009 hydrofoil via a passive jet induced by the double-control-hole
通过双控制孔引起的被动射流对 NACA0009 水翼上的尖端泄漏流进行涡流抑制
  • DOI:
    10.1016/j.oceaneng.2021.109647
    10.1016/j.oceaneng.2021.109647
  • 发表时间:
    2021-10
    2021-10
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yadong Huang;Desheng Zhang;Guangjian Zhang;B.P.M. van Esch;Fei Wang
    Yadong Huang;Desheng Zhang;Guangjian Zhang;B.P.M. van Esch;Fei Wang
  • 通讯作者:
    Fei Wang
    Fei Wang
Assessment of an improved turbulence model in simulating the unsteady flows around a D-shaped cylinder and an open cavity
模拟 D 形圆柱体和开腔周围非定常流动的改进湍流模型的评估
  • DOI:
    10.1016/j.apm.2020.01.068
    10.1016/j.apm.2020.01.068
  • 发表时间:
    2020-07
    2020-07
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Lei Shi;Yefang Wang;Guangjian Zhang;Yongxin Jin;Desheng Zhang
    Lei Shi;Yefang Wang;Guangjian Zhang;Yongxin Jin;Desheng Zhang
  • 通讯作者:
    Desheng Zhang
    Desheng Zhang
sharedCharging: Data-Driven Shared Charging for Large-Scale Heterogeneous Electric Vehicle Fleets
NUMERICAL INVESTIGATION OF BLADE DYNAMIC CHARACTERISTICS IN AN AXIAL FLOW PUMP
轴流泵叶片动态特性的数值研究
  • DOI:
    10.2298/tsci1305511z
    10.2298/tsci1305511z
  • 发表时间:
    2013
    2013
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Desheng Zhang;Dazhi Pan;Yan Xu;Peipei Shao
    Desheng Zhang;Dazhi Pan;Yan Xu;Peipei Shao
  • 通讯作者:
    Peipei Shao
    Peipei Shao
A novel flow control method suppressing tip leakage vortex of a hydrofoil applied for ducted devices
  • DOI:
    10.1016/j.oceaneng.2024.118920
    10.1016/j.oceaneng.2024.118920
  • 发表时间:
    2024-11-01
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fadong Gu;Lei Shi;Xi Shen;Guangjian Zhang;Linlin Geng;Desheng Zhang;B.P.M. (Bart) van Esch
    Fadong Gu;Lei Shi;Xi Shen;Guangjian Zhang;Linlin Geng;Desheng Zhang;B.P.M. (Bart) van Esch
  • 通讯作者:
    B.P.M. (Bart) van Esch
    B.P.M. (Bart) van Esch
共 50 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10
前往

Desheng Zhang的其他基金

Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411151
    2411151
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
    $ 33.5万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Human Mobility Prediction and Intervention based on Cross-Domain Infrastructure-Human Interactions
职业:基于跨域基础设施-人类交互的人类流动预测和干预
  • 批准号:
    2047822
    2047822
  • 财政年份:
    2022
  • 资助金额:
    $ 33.5万
    $ 33.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
SCC-IRG Track 1: Socially Informed Services Conflict Governance through Specification, Detection, Resolution and Prevention
SCC-IRG 第 1 轨:通过规范、检测、解决和预防进行社会知情服务冲突治理
  • 批准号:
    1952096
    1952096
  • 财政年份:
    2020
  • 资助金额:
    $ 33.5万
    $ 33.5万
  • 项目类别:
    Standard Grant
    Standard Grant
S&AS: FND: COLLAB: Adaptable Vehicular Sensing and Control for Fleet-Oriented Systems in Smart Cities
S
  • 批准号:
    1849238
    1849238
  • 财政年份:
    2019
  • 资助金额:
    $ 33.5万
    $ 33.5万
  • 项目类别:
    Standard Grant
    Standard Grant
CPS: Small: Collaborative Research: Improving Efficiency of Electric Vehicle Fleets: A Data-Driven Control Framework for Heterogeneous Mobile Cyber Physical Systems
CPS:小型:协作研究:提高电动汽车车队的效率:异构移动网络物理系统的数据驱动控制框架
  • 批准号:
    1932223
    1932223
  • 财政年份:
    2019
  • 资助金额:
    $ 33.5万
    $ 33.5万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
    $ 33.5万
  • 项目类别:
    Standard Grant
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
    $ 33.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
    $ 33.5万
  • 项目类别:
    Standard Grant
    Standard Grant
CDS&E/Collaborative Research: A Symbolic Artificial Intelligence Framework for Discovering Physically Interpretable Constitutive Laws of Soft Functional Composites
CDS
  • 批准号:
    2244952
    2244952
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
    $ 33.5万
  • 项目类别:
    Standard Grant
    Standard Grant
CDS&E/Collaborative Research: A Symbolic Artificial Intelligence Framework for Discovering Physically Interpretable Constitutive Laws of Soft Functional Composites
CDS
  • 批准号:
    2244953
    2244953
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
    $ 33.5万
  • 项目类别:
    Standard Grant
    Standard Grant