喵ID:Hvxs8p免责声明

sharedCharging: Data-Driven Shared Charging for Large-Scale Heterogeneous Electric Vehicle Fleets

基本信息

DOI:
10.1145/3351266
发表时间:
2019-09-01
影响因子:
--
通讯作者:
Desheng Zhang
中科院分区:
其他
文献类型:
Journal Paper
作者: Guang Wang;Wenzhong Li;Desheng Zhang研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Our society is witnessing a rapid vehicle electrification process. Even though being environmental-friendly, electric vehicles have not reached their full potentials due to prolonged charging time. Moreover, unbalanced spatiotemporal charging demand/supply along with the uneven number of charging stations between heterogeneous fleets make electric vehicle management more challenging, e.g., surplus charging stations across a city for electric buses but limited charging stations in some regions for electric taxis, which severely limit the charging performance of the whole electric vehicle network in a city. In this paper, we first analyze a large-scale real-world dataset from two heterogeneous electric vehicle fleets in the Chinese city Shenzhen. We investigate their mobility and charging patterns and then verify the practicability and necessity of shared charging. Based on the insights we found, we design a generic real-time shared charging scheduling system called sharedCharging to improve overall charging efficiency for heterogeneous electric vehicle fleets. Our sharedCharging also considers sophisticated real-world constraints, e.g., station spaces, availability of charging points, real-time timetable guarantee, etc. More importantly, we take the electric bus and electric taxi fleets as a concrete example of heterogeneous electric vehicle fleets given their different operating patterns. We implement and evaluate sharedCharging with streaming data from over 13,000 electric taxis and 16,000 electric buses, coupled with the charging station data in the Chinese city Shenzhen, which is the largest public electric vehicle network in the world. The evaluation results demonstrate that the proposed sharedCharging reduces the waiting time by 63.5% and reduces the total charging time by 15% on average for e-taxis.
我们的社会正见证着车辆快速电动化的进程。尽管电动汽车环保,但由于充电时间过长,其潜力尚未完全发挥。此外,时空充电供需不平衡以及不同类型车队之间充电站数量不均,使得电动汽车管理更具挑战性,例如,城市中电动公交车的充电站过剩,但某些地区电动出租车的充电站却有限,这严重限制了城市中整个电动汽车网络的充电性能。在本文中,我们首先分析了来自中国深圳两个不同类型电动汽车车队的大规模真实数据集。我们研究了它们的出行和充电模式,然后验证了共享充电的实用性和必要性。基于我们的发现,我们设计了一个通用的实时共享充电调度系统,名为sharedCharging,以提高不同类型电动汽车车队的整体充电效率。我们的sharedCharging还考虑了复杂的现实约束条件,例如站点空间、充电点的可用性、实时时间表保障等。更重要的是,鉴于电动公交车和电动出租车车队不同的运营模式,我们将它们作为不同类型电动汽车车队的具体示例。我们利用来自13000多辆电动出租车和16000多辆电动公交车的流数据以及中国深圳的充电站数据(深圳拥有世界上最大的公共电动汽车网络)来实施和评估sharedCharging。评估结果表明,所提出的sharedCharging系统使电动出租车的平均等待时间减少了63.5%,总充电时间减少了15%。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

Desheng Zhang
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓