Shape adaptable, non-centrosymmetric viral scaffolds for assembly of self-propelled nanomaterials

用于组装自驱动纳米材料的形状适应性强、非中心对称的病毒支架

基本信息

  • 批准号:
    2002941
  • 负责人:
  • 金额:
    $ 34.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical Summary: Synthetic swimmers have been increasingly explored. These remarkable self-propelled materials can convert chemical or light energy into locomotion, increasing mixing and accelerating chemical reactions. Asymmetry in particle composition enables movement through a local build-up of reaction products, whereas particle size and geometry control speed and directionality. While motors with dimensions of 100s of nanometers or microns have been widely studied, sub-100 nm devices have been largely neglected because they are harder to make. This research will use the expert manufacturing capabilities of viral biomaterials to overcome these fabrication challenges. The development of such an assembly strategy will enable the spatial and topographical control essential for important biomedical, sensing, and environmental remediation applications. This research will support both mentoring and outreach activities to inspire, recruit, and train a diverse group of scientists and engineers. These activities will strengthen the education of graduate, undergraduate, and middle students.Technical Summary: Viral nanoparticles are monodisperse, self-assembled biomaterials. Their structure and chemistry, including exact shape and site-specific functional groups, is genetically encoded and known with precision. The project objective is to create a shape-changing viral template with broken symmetry that is capable of serving as a platform with which to design and synthesize asymmetric functional nanomaterials. The proposed work will focus on using the size and shape of the transformed viral templates to manipulate the motion of viral nanoparticle-based nanoswimmers. Viral geometry will be converted from filament to rod to spheroid through brief organic solvent exposure. Following these extreme dimensional changes and sidechain packing transitions, differences in surface exposed residues will be evaluated. In addition, the effect of N-terminal amino acid sidechain character on solvent-based transformation, as well as the size and stability of the shape-modified scaffold will be studied. The reduced surface chemistry homogeneity of the shape-changed viruses will be used to synthesize or assemble non-centrosymmetric self-electrophoretic and light-induced self-electrophoretic nanoparticle-based nanoswimmers. Viral-templated nanoparticle trajectory will be explored, rotational and translational diffusion coefficients measured, and motion correlated with nanomaterial size and shape. The proposed studies will improve fundamental understanding of the structure-function relationship associated with geometric tunability of the filamentous virus and particle motion; advance knowledge of biomolecule interactions with and control over non-centrosymmetric nanostructure formation; and enhance viral-templated nanoparticle motion through precise control over template size and shape.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:人们对人工游泳器的探索越来越多。这些非凡的自驱动材料可以将化学或光能转化为运动,增加混合并加速化学反应。颗粒组成的不对称性使得能够通过反应产物的局部堆积而移动,而颗粒尺寸和几何形状控制速度和方向性。虽然尺寸为数百纳米或微米的电机已被广泛研究,但低于 100 纳米的设备却在很大程度上被忽视,因为它们更难制造。这项研究将利用病毒生物材料的专业制造能力来克服这些制造挑战。这种组装策略的开发将使空间和地形控制成为重要的生物医学、传感和环境修复应用所必需的。这项研究将支持指导和外展活动,以激励、招募和培训多元化的科学家和工程师群体。这些活动将加强对研究生、本科生和中学生的教育。技术摘要:病毒纳米颗粒是单分散、自组装的生物材料。 它们的结构和化学性质,包括精确的形状和位点特异性官能团,是通过基因编码和精确了解的。 该项目的目标是创建一种具有破缺对称性的变形病毒模板,能够作为设计和合成不对称功能纳米材料的平台。拟议的工作将侧重于利用转化病毒模板的大小和形状来操纵基于病毒纳米颗粒的纳米游泳器的运动。 通过短暂的有机溶剂暴露,病毒的几何形状将从丝状体转变为棒状体,再转变为球状体。在这些极端的尺寸变化和侧链堆积转变之后,将评估表面暴露残留物的差异。 此外,还将研究N端氨基酸侧链特征对溶剂型转化的影响,以及形状修饰支架的尺寸和稳定性。 形状改变病毒的表面化学均匀性降低将用于合成或组装非中心对称自电泳和光诱导自电泳纳米颗粒纳米游泳器。将探索病毒模板纳米颗粒轨迹,测量旋转和平移扩散系数,以及与纳米材料尺寸和形状相关的运动。拟议的研究将提高对丝状病毒几何可调性和粒子运动相关的结构功能关系的基本理解;提高生物分子与非中心对称纳米结构形成的相互作用和控制的知识;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bifunctional M13 Bacteriophage Nanospheroids for the Synthesis of Hybrid Noncentrosymmetric Nanoparticles
  • DOI:
    10.1021/acsanm.0c01876
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Plank;Zaira Alibay;T. Ngo-Duc;Michelle Y. H. Lai;E. Mayes;E. Haberer
  • 通讯作者:
    J. Plank;Zaira Alibay;T. Ngo-Duc;Michelle Y. H. Lai;E. Mayes;E. Haberer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elaine Haberer其他文献

Elaine Haberer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elaine Haberer', 18)}}的其他基金

Low-cost label-free whispering gallery mode electrospun optical biosensor for simultaneous detection of multiple biomolecules.
低成本无标记回音壁模式电纺光学生物传感器,用于同时检测多个生物分子。
  • 批准号:
    1406795
  • 财政年份:
    2014
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant
BRIGE: An Integrated Research and Education Program for Viral-Templated Type-II Nanostructured Heterojunctions for Photovoltaics
BRIGE:用于光伏的病毒模板 II 型纳米结构异质结的综合研究和教育计划
  • 批准号:
    1032466
  • 财政年份:
    2010
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant

相似国自然基金

强散射水下环境中的偏振成像增强技术及其适应性优化
  • 批准号:
    62001382
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于强情境化分析的项目适应性环境管理研究
  • 批准号:
    71971107
  • 批准年份:
    2019
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
南海北部强中尺度涡中短期可预报性与适应性观测研究
  • 批准号:
    41776028
  • 批准年份:
    2017
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
强紫外线辐射生境中南极冰藻光修复酶及其修复DNA紫外辐射损伤分子机制研究
  • 批准号:
    41576187
  • 批准年份:
    2015
  • 资助金额:
    69.0 万元
  • 项目类别:
    面上项目
复杂非均质地基隔震核电厂房系统的抗震性能与适应性研究
  • 批准号:
    51508148
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Adaptable Polymer Micelles for Tumor Targeting
用于肿瘤靶向的适应性聚合物胶束
  • 批准号:
    8391233
  • 财政年份:
    2009
  • 资助金额:
    $ 34.2万
  • 项目类别:
Adaptable Polymer Micelles for Tumor Targeting
用于肿瘤靶向的适应性聚合物胶束
  • 批准号:
    8005536
  • 财政年份:
    2009
  • 资助金额:
    $ 34.2万
  • 项目类别:
Adaptable Polymer Micelles for Tumor Targeting
用于肿瘤靶向的适应性聚合物胶束
  • 批准号:
    8196975
  • 财政年份:
    2009
  • 资助金额:
    $ 34.2万
  • 项目类别:
Adaptable Polymer Micelles for Tumor Targeting
用于肿瘤靶向的适应性聚合物胶束
  • 批准号:
    7797889
  • 财政年份:
    2009
  • 资助金额:
    $ 34.2万
  • 项目类别:
Adaptable Polymer Micelles for Tumor Targeting
用于肿瘤靶向的适应性聚合物胶束
  • 批准号:
    8585830
  • 财政年份:
    2009
  • 资助金额:
    $ 34.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了