Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery

合作研究:I-AIM:用于多尺度材料发现的可解释增强智能

基本信息

  • 批准号:
    1940125
  • 负责人:
  • 金额:
    $ 38.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2020-10-31
  • 项目状态:
    已结题

项目摘要

The ability to model, predict, and improve the mechanical performance of engineering materials such as polymers, composites, and alloys can have a significant impact on manufacturing, with important economic and societal benefits. As advanced computational algorithms and data science approaches become available, they can be harnessed to disrupt the current approaches to materials modeling, and allow for the design and discovery of new high-strength, high-performance materials for manufacturing. Bringing together multidisciplinary teams of researchers can maximize the impact of these new tools and techniques. This Harnessing the Data Revolution Institutes for Data-Intensive Research in Science and Engineering (HDR-I-DIRSE) award supports the conceptualization of an Institute to develop novel data science methods, address fundamental scientific questions of Materials Engineering and Manufacturing, and build such multidisciplinary teams. The project will apply novel data science methods to advance the analysis of large sets of structural data of composite materials and alloys from the atomic scale to correlate with and predict mechanical properties. The methods are based on machine learning techniques and uncertainty quantification, and will help uncover underlying structural features in the materials that determine the properties and performance. The methods and results will help accelerate the development of ultra-high strength and lightweight carbon-based composites for aerospace applications, and multi-element superalloys for more durable engine parts, by navigating in the large possible design space and providing faster predictions than experiments and traditional simulation methods. The project will also lead to new methods and computational algorithms that will become publicly available. The investigators will train graduate and undergraduate students from various disciplines with a focus on engaging women and minorities in STEM fields, develop short courses that integrate novel Materials Science and Engineering applications and Data Science methods, and foster vertical integration of interdisciplinary research from undergraduate students to senior scientists.This project aims at building an effective and interpretable learning framework for materials data across scales to solve a major challenge in current data-driven materials design. The combined Materials Science and Data Science approaches will synergistically contribute to the development and use of interpretable and physics-informed data science methodologies to gain new understanding of mechanical properties of polymer composites and alloys, with the potential to be expanded into different property sets and different systems. The PIs will utilize available data efficiently through combination with physical rules and prior knowledge, to develop an interpretable augmented intelligent system to learn principles behind the association of input structures with material properties with uncertainty quantification. The interconnected tasks involve the (1) collection and curation of large amounts of computational and experimental data for polymer/carbon nanotube composites and alloys from open data sources and targeted calculations and experiments, (2) the development of geometric and topological methods incorporating physical principles to generate a better, more sensitive low-dimensional representation of the multidimensional data and characterize the parameter space related to mechanical properties, (3) the development of a Bayesian deep reinforcement learning framework to generate interpretable knowledge graphs that depict the relational knowledge among physical quantities with uncertainty quantification, and (4) the prediction of mechanical properties to reveal design principles to improve materials performance, evaluate and validate the methods, and develop software for dissemination. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity and is co-funded by the Division of Civil, Mechanical and Manufacturing Innovation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建模、预测和改进聚合物、复合材料和合金等工程材料的机械性能的能力可以对制造业产生重大影响,带来重要的经济和社会效益。随着先进的计算算法和数据科学方法的出现,它们可以用来颠覆当前的材料建模方法,并允许设计和发现新的高强度、高性能制造材料。将多学科研究人员团队聚集在一起可以最大限度地发挥这些新工具和技术的影响。利用数据革命研究所进行科学与工程数据密集型研究 (HDR-I-DIRSE) 奖项支持研究所的概念化,以开发新颖的数据科学方法,解决材料工程和制造的基本科学问题,并建立这样的多学科团队。该项目将应用新颖的数据科学方法,从原子尺度推进对复合材料和合金的大量结构数据的分析,以关联和预测机械性能。这些方法基于机器学习技术和不确定性量化,将有助于揭示材料中决定特性和性能的潜在结构特征。这些方法和结果将有助于加速用于航空航天应用的超高强度和轻质碳基复合材料的开发,以及用于更耐用发动机零件的多元素超级合金,通过在可能的大设计空间中导航并提供比实验和结果更快的预测。传统的模拟方法。该项目还将带来公开可用的新方法和计算算法。研究人员将培训不同学科的研究生和本科生,重点是让女性和少数族裔参与 STEM 领域,开发整合新颖的材料科学与工程应用和数据科学方法的短期课程,并促进从本科生到研究生的跨学科研究的垂直整合。该项目旨在为跨尺度的材料数据建立一个有效且可解释的学习框架,以解决当前数据驱动的材料设计中的重大挑战。材料科学和数据科学相结合的方法将协同促进可解释和物理信息数据科学方法的开发和使用,以获得对聚合物复合材料和合金的机械性能的新理解,并有可能扩展到不同的性能集和不同的应用领域。系统。 PI 将通过结合物理规则和先验知识,有效地利用可用数据,开发可解释的增强智能系统,以学习输入结构与具有不确定性量化的材料属性之间的关联背后的原理。相互关联的任务包括(1)从开放数据源收集和管理聚合物/碳纳米管复合材料和合金的大量计算和实验数据以及有针对性的计算和实验,(2)结合物理原理开发几何和拓扑方法生成更好、更灵敏的多维数据低维表示,并表征与机械性能相关的参数空间,(3)开发贝叶斯深度强化学习框架,生成可解释的知识图,描述物理量之间的关系知识具有不确定性(4) 预测机械性能,以揭示提高材料性能的设计原理,评估和验证方法,并开发传播软件。该项目是美国国家科学基金会利用数据革命 (HDR) 大创意活动的一部分,由土木、机械和制造创新部门共同资助。该奖项反映了 NSF 的法定使命,经评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Persistence enhanced graph neural network
持久性增强图神经网络
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yusu Wang其他文献

Road Network Reconstruction from satellite images with Machine Learning Supported by Topological Methods
拓扑方法支持的机器学习卫星图像路网重建
Position: Topological Deep Learning is the New Frontier for Relational Learning
立场:拓扑深度学习是关系学习的新领域
  • DOI:
  • 发表时间:
    2024-02-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Theodore Papamarkou;Tolga Birdal;Michael Bronstein;Gunnar Carlsson;Justin Curry;Yue Gao;Mustafa Hajij;Rol;Kwitt;Pietro Lio;P. Lorenzo;Vasileios Maroulas;Nina Miolane;Farzana Nasrin;K. Ramamurthy;Bastian Rieck;Simone Scardapane;Michael T. Schaub;Petar Velivckovi'c;Bei Wang;Yusu Wang;Guo;Ghada Zamzmi
  • 通讯作者:
    Ghada Zamzmi
Topological Analysis of Scalar Fields with Outliers
具有异常值的标量场的拓扑分析
  • DOI:
    10.4230/lipics.socg.2015.827
  • 发表时间:
    2014-12-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Buchet;F. Chazal;T. Dey;Fengtao Fan;S. Oudot;Yusu Wang
  • 通讯作者:
    Yusu Wang
Graph induced complex on point data
图诱导点数据的复杂性
  • DOI:
    10.1145/2462356.2462387
  • 发表时间:
    2013-04-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Dey;Fengtao Fan;Yusu Wang
  • 通讯作者:
    Yusu Wang
Topology-Aware Segmentation Using Discrete Morse Theory
使用离散莫尔斯理论的拓扑感知分割
  • DOI:
  • 发表时间:
    2021-03-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoling Hu;Yusu Wang;Fuxin Li;D. Samaras;Chao Chen
  • 通讯作者:
    Chao Chen

Yusu Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yusu Wang', 18)}}的其他基金

Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310411
  • 财政年份:
    2023
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
AI Institute for Learning-Enabled Optimization at Scale (TILOS)
AI 大规模学习优化研究所 (TILOS)
  • 批准号:
    2112665
  • 财政年份:
    2021
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2039794
  • 财政年份:
    2020
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1733798
  • 财政年份:
    2017
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research:Geometric and topological algorithms for analyzing road network data
AF:小型:协作研究:用于分析道路网络数据的几何和拓扑算法
  • 批准号:
    1618247
  • 财政年份:
    2016
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
AF: Small: Analyzing Complex Data with a Topological Lens
AF:小:用拓扑透镜分析复杂数据
  • 批准号:
    1526513
  • 财政年份:
    2015
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
AF: Small: Approximation Algorithms and Topological Graph Theory
AF:小:近似算法和拓扑图论
  • 批准号:
    1423230
  • 财政年份:
    2014
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
AF: Small: Geometric Data Processing and Analysis via Light-weight Structures
AF:小型:通过轻量结构进行几何数据处理和分析
  • 批准号:
    1319406
  • 财政年份:
    2013
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
AF: EAGER: Collaborative Research: Integration of Computational Geometry and Statistical Learning for Modern Data Analysis
AF:EAGER:协作研究:现代数据分析的计算几何与统计学习的集成
  • 批准号:
    1048983
  • 财政年份:
    2010
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant

相似国自然基金

AIM2通过RACK1/PP2A-AKT-mTOR代谢通路调节Treg细胞稳态导致自身免疫甲状腺炎的机制研究
  • 批准号:
    82300885
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脑出血后PAR4激活的小胶质细胞通过外泌体AIM2驱动神经元PANoptosis的机制研究
  • 批准号:
    82360250
  • 批准年份:
    2023
  • 资助金额:
    32.2 万元
  • 项目类别:
    地区科学基金项目
鞘藻目的系统分类学研究
  • 批准号:
    32300177
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复方地黄颗粒通过调控SCFAs代谢抑制AIM2/Caspase-1信号通路缓解帕金森病的机制研究
  • 批准号:
    82305353
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
目的地政策叙事对旅游者绿色出行的影响机制与效应研究
  • 批准号:
    72302044
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2404816
  • 财政年份:
    2023
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Project AIM-NEXT: All Included in Mathematics New Extensions
合作研究:AIM-NEXT 项目:全部包含在数学新扩展中
  • 批准号:
    2200371
  • 财政年份:
    2022
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: AIM & ICERM Research Experiences for Undergraduate Faculty (REUF)
合作研究:AIM
  • 批准号:
    2015462
  • 财政年份:
    2020
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
Collaborative Research: AIM & ICERM Research Experiences for Undergraduate Faculty (REUF)
合作研究:AIM
  • 批准号:
    2015375
  • 财政年份:
    2020
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
Collaborative Research: AIM & ICERM Research Experiences for Undergraduate Faculty (REUF)
合作研究:AIM
  • 批准号:
    2015462
  • 财政年份:
    2020
  • 资助金额:
    $ 38.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了