Ultra-Low Phase Noise, Ultra-Wide Band Silicon Photonics Millimeter-wave Signal Generators With Automatic Calibration

具有自动校准功能的超低相位噪声、超宽带硅光子毫米波信号发生器

基本信息

项目摘要

Millimeter-wave (mm-wave) signal generation with ultra-low phase noise, ultra-wideband and high-resolution is an essential challenge for many applications including modern instrumentation, software-defined radios for wireless communications, radars, and warfare systems. While it is extremely challenging with conventional electronic signal generation technology, mm-wave silicon-photonics technology has the potential to provide mm-wave signal generators with simultaneous ultra-wide bandwidth, ultra-low phase noise, high frequency resolution and small footprint. Utilizing photonics modulators, filters and delay elements along with integrated electronics will allow the use of mm-wave silicon-photonics to fulfill these requirements. This project will demonstrate ultra-low phase noise, ultra-wideband, and high-resolution mm-wave silicon-photonics signal generators to advance wireless technologies for applications such as modern instrumentation, software-defined radios, radars, and warfare systems. The research has the potential to revolutionize the future of instrumentation and wireless industries and provide further technological diversification for the semiconductor industry. In addition to the aforementioned technical impacts, the project also promotes outreach activities to increase participation of under-represented groups in science and engineering, including annual summer camps for high school students. The research and educational results of this work will be disseminated to academic, industrial and government sectors.The main goal of this project is to develop novel chip-scale mm-wave silicon-photonics signal generator architectures with ultra-low phase noise, ultra-wideband, continuous tuning range, and high-resolution capabilities implemented using hybrid Silicon-on-Insulator (SOI) photonics and Complementary-Metal-Oxide-Semiconductor (CMOS) chips. The emergence of silicon-photonics technology has enabled the potential of realizing silicon-photonics optoelectronic oscillator (OEO) to achieve microwave signal generation within the size and power consumption of small form-factor systems. However, the potential realization of existing silicon-photonics OEOs has two main challenges; first, the tuning range and phase noise are limited due to poor OEO architectural choices and, second, the photonics components’ initial responses are significantly distorted due to the process variation of silicon-photonics technology, so an automatic calibration methodology of these initial responses is missing. CMOS electronics can be employed along with the silicon-photonics OEO to perform phase/frequency locking, laser phase noise reduction, and automatic calibration of silicon-photonics components. Employing electronic control circuitry implemented on CMOS chip allows for the signal generator phase/frequency locking, laser phase noise reduction, and compensation of severe process and temperature variations in silicon-photonics. The research objectives are: (1) architecture definition of a mm-wave silicon-photonics signal generator based on an integrated phase/frequency-locked OEO with laser phase noise cancellation along with performance analysis, (2) development of a novel silicon-photonics OEO architecture and its components including modulator, filter and delay element, and algorithms/hardware for their automatic tuning, (3) implementation of novel CMOS prototypes which include the OEO electronic circuitry, laser phase noise reduction, phase/frequency locking loop and automatic tuning hardware, and (4) hybrid integration of silicon-photonics and CMOS chips and perform the required tests for the entire unit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于许多应用,包括现代仪器,用于无线通信,雷达和战争系统的软件定义的无线电,超低相噪声,超宽带和高分辨率是具有超低相噪声,超宽带和高分辨率的信号生成的信号。虽然传统的电子信号生成技术极为挑战,但MM波硅 - 光子技术具有可能为MM波信号发电机提供简单的超宽带宽,超低相位噪声,高频分辨率和小足迹。利用光子学调节器,过滤器和延迟元件以及集成电子设备将允许使用MM-WAVE硅 - 光子学来满足这些要求。该项目将展示超低相位噪声,超宽带和高分辨率MM波硅 - 光子学信号发生器,以推动用于应用程序,例如现代仪器,软件定义的无线电,雷达和战争系统等应用的无线技术。这项研究有可能彻底改变仪器和无线行业的未来,并为半导体行业提供进一步的技术多样性。除了优先考虑的技术影响外,该项目还促进了外展活动,以增加代表性不足的科学和工程学的参与,包括年度夏令营的高中生。这项工作的研究和教育结果将被分散到学术,工业和政府部门。该项目的主要目标是开发具有超低相位噪声,超宽带,连续调整范围和高分辨率的杂化能力和高分辨率的杂化能力和高分辨率的杂化能力和高分辨率的杂化能力及其高分辨率的新型芯片尺度MM-WAVE硅 - 光子型信号发电机架构(完全金属 - 氧化物 - 气门导体(CMOS)芯片。硅 - 光子技术的出现使实现硅 - 光电振荡器(OEO)的潜力能够在小型形式系统系统的大小和功耗内实现微波信号的产生。但是,现有的硅 - 光子原料的潜在实现面临两个主要挑战。首先,由于OEO架构的选择差,调谐范围和相位噪声受到限制,其次,由于硅 - 光子技术的过程变化,光子学组件的初始响应显着扭曲,因此缺少这些初始响应的自动校准方法。 CMOS电子可以与硅 - 光子OEO一起进行相位/频率锁定,激光相降低和自动校准硅 - 光子学组件。采用在CMOS芯片上实施的电子控制电路可以进行信号发生器相/频率锁定,激光相降低以及硅光子学中严重过程和温度变化的补偿。 The research objectives are: (1) architecture definition of a mm-wave silicon-photonics signal generator based on an integrated phase/frequency-locked OEO with laser phase noise cancellation along with performance analysis, (2) development of a novel silicon-photonics OEO architecture and its components including modulator, filter and delay element, and algorithms/hardware for their automatic tuning, (3) implementation of novel CMOS原型包括OEO电子电路,降低激光相位噪声,相/频率锁定循环和自动调整硬件,以及(4)(4)硅 - 光能和CMOS芯片的混合整合,并对整个单位进行了所需的测试,这些奖项通过NSF的法定任务和构建的支持,这表明了NSF的众多奖项,这表明了NSF的良好依据。 标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamran Entesari其他文献

Kamran Entesari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamran Entesari', 18)}}的其他基金

SWIFT: Reconfigurable Microwave Silicon Photonics Filters and Passive-User-Friendly Protocols for Spectrum Coexistence
SWIFT:可重新配置的微波硅光子滤波器和无源用户友好的频谱共存协议
  • 批准号:
    2127721
  • 财政年份:
    2021
  • 资助金额:
    $ 39.76万
  • 项目类别:
    Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
  • 批准号:
    2116498
  • 财政年份:
    2020
  • 资助金额:
    $ 39.76万
  • 项目类别:
    Standard Grant
SpecEES: Spectrum and Energy Efficient Silicon Photonic Millimeter-wave Remote Antenna Units for Radio over Fiber Application
SpecEES:用于光纤无线电应用的频谱和节能硅光子毫米波远程天线单元
  • 批准号:
    1824341
  • 财政年份:
    2018
  • 资助金额:
    $ 39.76万
  • 项目类别:
    Standard Grant
A Wideband Silicon Photonic Millimeter-wave Beam-forming Transmitter with Automatic Beam Calibration
具有自动光束校准功能的宽带硅光子毫米波波束形成发射机
  • 批准号:
    1807281
  • 财政年份:
    2018
  • 资助金额:
    $ 39.76万
  • 项目类别:
    Standard Grant
Wideband Silicon-Based Receivers for RF/Microwave Spectrum Sensing
用于射频/微波频谱传感的宽带硅基接收器
  • 批准号:
    1230274
  • 财政年份:
    2012
  • 资助金额:
    $ 39.76万
  • 项目类别:
    Standard Grant
CAREER: Versatile Integrated Platforms for Broadband Microwave Dielectric Spectroscopy
职业:宽带微波介电谱的多功能集成平台
  • 批准号:
    1054819
  • 财政年份:
    2011
  • 资助金额:
    $ 39.76万
  • 项目类别:
    Standard Grant
Miniaturized Waveguide RF MEMS Tunable Filters
小型化波导 RF MEMS 可调谐滤波器
  • 批准号:
    0901088
  • 财政年份:
    2009
  • 资助金额:
    $ 39.76万
  • 项目类别:
    Standard Grant

相似国自然基金

低碳环境下考虑阶段间运输混合流水车间成组调度的协同智能优化方法
  • 批准号:
    72301026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低TOC碳酸盐岩在高-过成熟阶段的生气潜力与乙烷δ13C研究
  • 批准号:
    41972159
  • 批准年份:
    2019
  • 资助金额:
    65 万元
  • 项目类别:
    面上项目
结构低秩矩阵优化问题的多阶段凸松弛法研究
  • 批准号:
    11571120
  • 批准年份:
    2015
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
低演化阶段轻烃的生成及地球化学应用
  • 批准号:
    41272166
  • 批准年份:
    2012
  • 资助金额:
    78.0 万元
  • 项目类别:
    面上项目
低中煤化阶段煤中可溶有机质形成演化的化学机制及其与煤化作用跃变的关系
  • 批准号:
    40572094
  • 批准年份:
    2005
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ultra Low Phase Noise Analysis & Measurement
超低相位噪声分析
  • 批准号:
    10089379
  • 财政年份:
    2024
  • 资助金额:
    $ 39.76万
  • 项目类别:
    Collaborative R&D
SBIR Phase II: Rechargeable Carbon-Oxygen Battery for Ultra-Low-Cost Renewable Energy Storage
SBIR第二阶段:用于超低成本可再生能源存储的可充电碳氧电池
  • 批准号:
    2222588
  • 财政年份:
    2023
  • 资助金额:
    $ 39.76万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Development of an ultra-low-cost distributed wind turbine
SBIR第一阶段:开发超低成本分布式风力发电机
  • 批准号:
    2225406
  • 财政年份:
    2023
  • 资助金额:
    $ 39.76万
  • 项目类别:
    Standard Grant
Ultra-low-temperature (6 K) static NMR-DNP for metalloproteins, proteins in cells, and materials
用于金属蛋白、细胞中蛋白质和材料的超低温 (6 K) 静态 NMR-DNP
  • 批准号:
    10546201
  • 财政年份:
    2023
  • 资助金额:
    $ 39.76万
  • 项目类别:
Development of a tele-mentoring system integrated into an ultra-portable surgical microscope to treat cataract in underserved populations
开发集成到超便携式手术显微镜中的远程指导系统,以治疗服务不足人群的白内障
  • 批准号:
    10602749
  • 财政年份:
    2023
  • 资助金额:
    $ 39.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了