Student workshop in symplectic and contact geometry

辛几何和接触几何学生研讨会

基本信息

  • 批准号:
    2002676
  • 负责人:
  • 金额:
    $ 9.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

This award provides support for the next three editions of the Kylerec Student Workshop (2020, 2021 and 2022), starting with its 2020 edition to be held from July 20 to July 24 in Big Bear Lake, CA. The Kylerec workshop aims to introduce aspiring mathematicians in the fields of symplectic and contact geometry and from many institutions to vibrant areas of research, fostering collaboration, forming strong research ties between young researchers, and thus promoting future collaboration and research. The workshop is specifically designed to encourage the development of a diverse group of researchers in the fields of symplectic and contact geometry. It is a week-long intensive workshop, in which all activities occur under one roof. The lectures are delivered by the graduate student participants with the help of three to four mentors, who are emerging expert researchers in the field. This setup enhances communication skills, encourages active involvement of the participants and forging new collaborations.The student organizers for the 2020 Kylerec workshop are Orsola Capovilla-Searle (Duke University), Dahye Cho (Stony Brook University), Francois-Simon Fauteux-Chapleau (Stanford University), Tim Large (MIT) and Sarah McConnell (Stanford University). The topic is Quantitative Symplectic Geometry, with a focus on symplectic embedding problems. The deceptively simple question of when does one symplectic manifold embed inside another, and the subtle dependance of this question on quantitative parameters, has been a focal point of the subject for the last thirty years. Since Gromov's celebrated non-squeezing result, a variety of techniques drawing upon ideas in dynamical systems, toric algebraic geometry and four-dimensional gauge theory have been used to better understand such problems; yet a systematic understanding has eluded researchers thus far. The objective of the 2020 Kylerec workshop is to understand the current state of knowledge on such questions, covering both the methods researchers have developed to produce surprising symplectic embeddings, as well as the technical tools of Floer theory and embedded contact homology that have been used to provide state-of-the-art obstructions to the existence of a symplectic embedding. The web site for the Kylerec workshops is https://kylerec.wordpress.com/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eleny-Nicoleta Ionel其他文献

Eleny-Nicoleta Ionel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eleny-Nicoleta Ionel', 18)}}的其他基金

Moduli Spaces of Pseudoholomorphic Maps
伪全纯映射的模空间
  • 批准号:
    2203302
  • 财政年份:
    2022
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Continuing Grant
The Structure of the Gromov-Witten Invariants
Gromov-Witten 不变量的结构
  • 批准号:
    1905361
  • 财政年份:
    2019
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Continuing Grant
Conference Proposal: Kylerec Student Workshop in Symplectic and Contact Geometry
会议提案:Kylerec 辛几何和接触几何学生研讨会
  • 批准号:
    1818138
  • 财政年份:
    2018
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant
Graduate student workshop in symplectic and contact geometry
辛几何和接触几何研究生研讨会
  • 批准号:
    1722470
  • 财政年份:
    2017
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant
Moduli Spaces Relative Singular Divisors and Lagrangians
模空间相对奇异因数和拉格朗日
  • 批准号:
    0905738
  • 财政年份:
    2009
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant
Properties of Gromov-Witten Invariants
Gromov-Witten 不变量的性质
  • 批准号:
    0707164
  • 财政年份:
    2006
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Continuing Grant
Gromov Witten Invariants of Singular Spaces
奇异空间的 Gromov Witten 不变量
  • 批准号:
    0605003
  • 财政年份:
    2006
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant
Properties of Gromov-Witten Invariants
Gromov-Witten 不变量的性质
  • 批准号:
    0306299
  • 财政年份:
    2003
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Continuing Grant
Recursive formulas for Gromov-Witten invariants
Gromov-Witten 不变量的递归公式
  • 批准号:
    0071393
  • 财政年份:
    2000
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant
Gromov Invariants and Enumerative Invariants
格罗莫夫不变量和枚举不变量
  • 批准号:
    9996323
  • 财政年份:
    1999
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant

相似国自然基金

定制化生产下车间资源的数字孪生管控方法
  • 批准号:
    62303142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时变环境下混合流水车间调度优化理论与方法研究
  • 批准号:
    12371310
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
考虑装车效率的分布式柔性流水车间调度研究
  • 批准号:
    52305550
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
孪生数据驱动的船舶建造车间多工位协同优化与动态决策方法
  • 批准号:
    52371324
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于复杂工艺柔性的车间调度集成优化问题精确建模及其高效求解
  • 批准号:
    52305534
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Trisections Workshop: Connections with Symplectic Topology
会议:三等分研讨会:与辛拓扑的联系
  • 批准号:
    2308782
  • 财政年份:
    2023
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant
Conference Proposal: Kylerec Student Workshop in Symplectic and Contact Geometry
会议提案:Kylerec 辛几何和接触几何学生研讨会
  • 批准号:
    1818138
  • 财政年份:
    2018
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant
Graduate student workshop in symplectic and contact geometry
辛几何和接触几何研究生研讨会
  • 批准号:
    1722470
  • 财政年份:
    2017
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant
Symplectic Geometry Workshop at the Isaac Newton Institute
艾萨克·牛顿研究所辛几何研讨会
  • 批准号:
    1727545
  • 财政年份:
    2017
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant
L3 Graduate Student Workshop in Symplectic/Contact Geometry
L3 辛/接触几何研究生研讨会
  • 批准号:
    1619754
  • 财政年份:
    2016
  • 资助金额:
    $ 9.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了