CSEDI Collaborative Research: Experimental Partitioning of Highly Siderophile Elements at Ultratrace Level for Understanding the Conditions of Core Formation
CSEDI合作研究:超痕量高亲铁元素的实验分配以了解核心形成条件
基本信息
- 批准号:2001098
- 负责人:
- 金额:$ 36.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gold, platinum, osmium, irridium, ruthenium, rhodium, palladium, and rhenium (known collectively as highly siderophile elements) are among the rarest elements available to mankind. Their widespread use in technology and the arts results in a high cost. It also justifies extensive mining, which has a high environmental and human health impact. The reason for their scarcity is that they were scavenged into the core when Earth separated into a silicate outer layer (mantle and crust) and a metallic core. Even if these elements are highly depleted in the mantle, previous experimental work indicates that they are overabundant relative to expectation for scavenging by the core. Available experiments suggest that the mantle should be completely barren of these elements, which is not what is seen. A likely explanation for this discrepancy between experiments and observations is that the highly siderophile elements were delivered into the Earth's mantle by the late impact addition of meteoritic material after the core had formed. There are differences however between the composition of the mantle and meteorites, notably for ruthenium, and an important question is whether previous experiments reliably predict the scavenging of highly siderophile elements in the core. These experiments were limited in the pressure-temperature conditions that they could achieve and relies on large extrapolations to make inferences about the scavenging efficiency of the core. A new experimental approach relying on the laser ionization of selected highly siderophile elements coupled with experiments done in diamond anvil cells that can routinely reach pressures of 700,000 atmospheres and temperatures of 4500 K, will allow the partitioning of highly siderophile elements to be measured under core formation conditions without relying on large extrapolations. This work will apply a relatively new technique (Resonant Ionization Mass Spectrometry - RIMS) to in situ ultratrace analyses, which can find applications in a variety of fields outside of Earth sciences, including material sciences/development and nuclear forensics. The project is a multidisciplinary collaboration between geochemists, physicists and instrument developers, an experimental petrologist, and a high-pressure mineral physicist. The project will support two graduate as well as undergraduate students, who will be trained on a multidisciplinary research project. The PIs will also be involved in outreach at the K-12 level through the French-American Science Festival.The reason for the depletions in highly siderophile elements (HSEs) in the mantle is their removal into Earth’s core, and their subsequent replenishment by late accretion of extraterrestrial material representing ~0.5 % of Earth’s mass. To first order, this model of late delivery of chondritic material to the Earth can account for the abundance of HSEs in the mantle but it fails to explain the elevated Ru/Pt and Pd/Pt ratios in the mantle relative to chondrites and other HSEs. One explanation for these high ratios is that Ru and Pd may be less siderophile or chalcophile compared to other HSEs, resulting in their partial retention in mantle when the core formed. Testing this hypothesis is however difficult because the relevant metal/silicate partitioning experiments have been done at P-T conditions that are quite remote from those that are thought to have prevailed during core formation. The investigators will study the origin of HSEs in Earth’s mantle by applying a novel ultra-trace element quantification technique known as RIMS to measure the concentrations of selected HSEs in metal-silicate experiments done using piston cylinders and diamond anvil cells (DACs). Through this collaboration between geochemists, physicists and instrument developers, an experimental petrologist, and a high-pressure mineral physicist, the research group will study the effect of nano/micro metal nuggets on metal/silicate partition data, and will measure the partition coefficients of Ru, Pd, and Pt at 0–70 GPa and 2100–4500 K, which spans conditions relevant to core formation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
黄金,铂,渗水,hod恒,钯和rhenium artest元素可用于人类的广泛使用,而Alts则造成了较高的成本。人类人类人类人类人类人类人类人类人类人类人类人类人类人类人类人类人类H分离为硅酸盐外层(地幔和地壳),即使是在金属元素中也被耗尽。地幔,以前的实验工作过多,因为Xperiments对XPeriments的清除量都表明,在核心的后期核心添加了核心的核心元素中,应将其贫瘠的经验和观测形成的是差异,地幔的组成和陨石的问题是,prepius是否可以预测核心的筛查元素。在精选元件的激光电离上,在钻石铁砧细胞中进行的couth实验通常可以使700,000个大气和4500 K的温度弥补,这将使对核心的分配能够被测量,而无需依靠大型杂交。相对新技术(谐振质谱 - RIMS)可以在各种地球科学中找到应用,包括材料科学/发育和核心前肢。地下学生将接受CT的培训。核心,以及它们的亚分离补充,通过迟到的外星物质的后期积聚,抑制了地球质量的约0.5%。地幔中的PT和PD比相对于Chonedrites和其他HSE,导致其在地幔中的部分保留率是相关的金属/淤积实验。核心形成。调查人员将通过应用弹道元素定量E来测量使用活塞圆柱体和钻石砧(DACS)在Metal-Similicate实验中测量所选HSE的浓度,从而在地球上的HSE起源。在地球化学主义者之间,研究小组将纳米/微型金属块对金属/硅酸盐分区数据PD的影响,而PT为0-70 GPA和2100–2100–4500 K并被认为是值得使用Tounlectul值得更广泛影响的评论标准的值得支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolas Dauphas其他文献
Constraints on lunar regolith resurfacing from coupled modeling of stochastic gardening and neutron capture effects
随机园艺和中子捕获效应耦合建模对月球风化层表面重铺的限制
- DOI:
10.1016/j.gca.2024.04.013 - 发表时间:
2024 - 期刊:
- 影响因子:5
- 作者:
Justin Y. Hu;Ingo Leya;Nicolas Dauphas;Auriol S. P. Rae;Helen M. Williams - 通讯作者:
Helen M. Williams
Cosmogenic effects on chromium isotopes in iron meteorites
对铁陨石中铬同位素的宇宙成因效应
- DOI:
- 发表时间:
- 期刊:
- 影响因子:5
- 作者:
Jia Liu;Liping Qin;Jiuxing Xia;Richard W. Carlson;Ingo Leya;Nicolas Dauphas;Yongsheng He - 通讯作者:
Yongsheng He
The Chemical Composition of Ryugu: Prospects as a Reference Material for Solar System Composition
龙宫的化学成分:作为太阳系成分参考材料的前景
- DOI:
10.1111/maps.14109 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
T. Yokoyama;Nicolas Dauphas;R. Fukai;T. Usui;S. Tachibana;Maria Schonbachler;H. Busemann;M. Abe;T. Yada - 通讯作者:
T. Yada
Isotopic trichotomy of main belt asteroids from implantation of outer solar system planetesimals
外太阳系星子植入引起的主带小行星的同位素三分法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.3
- 作者:
D. Nesvorný;Nicolas Dauphas;D. Vokrouhlický;R. Deienno;Timo Hopp - 通讯作者:
Timo Hopp
Nicolas Dauphas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolas Dauphas', 18)}}的其他基金
Magma Structure and Anharmonicity Controls on Iron Isotopic Fractionation in Igneous Rocks
岩浆结构及火成岩中铁同位素分馏的非谐性控制
- 批准号:
1444951 - 财政年份:2015
- 资助金额:
$ 36.26万 - 项目类别:
Continuing Grant
Collaborative project: CSEDI -Understanding Si and Fe differentiation in Earth's mantle and core through experimental and theoretical research in geochemistry and mineral physics
合作项目:CSEDI - 通过地球化学和矿物物理的实验和理论研究了解地幔和地核中的硅和铁分异
- 批准号:
1502591 - 财政年份:2015
- 资助金额:
$ 36.26万 - 项目类别:
Continuing Grant
Redox and Structural Controls on Iron Isotopic Variations in Igneous Rocks
火成岩中铁同位素变化的氧化还原和结构控制
- 批准号:
1144429 - 财政年份:2012
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Collaborative Research: Environmental and Biogeochemical Reorganization during the Rise of Atmospheric Oxygen
合作研究:大气氧气上升过程中的环境和生物地球化学重组
- 批准号:
0820807 - 财政年份:2009
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
- 批准号:52305539
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
- 批准号:62371149
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
- 批准号:62362017
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153688 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153910 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
- 批准号:
2054884 - 财政年份:2021
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
- 批准号:
2054964 - 财政年份:2021
- 资助金额:
$ 36.26万 - 项目类别:
Continuing Grant