Beyond Hyperbolicity at the Ohio State University
俄亥俄州立大学的超越双曲性
基本信息
- 批准号:2000885
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the Beyond Hyperbolicity Conference at the Ohio State University, which will be held July 6-10, 2020. The theme of the conference is in geometric group theory, a field that uses algebraic techniques to understand complicated geometric spaces. The Ohio State University has long been a hub for research in geometric group theory, and this conference will continue in this tradition.Although hyperbolic groups and spaces are a common topic at geometric group theory conferences, the goal of this conference is to highlight work being done in other areas of combinatorial and geometric group theory. Whereas there have are many conferences focused on hyperbolic and acylindrically hyperbolic groups, mapping class groups, and cubical groups, there have been relatively few conferences devoted to a variety of other groups relevant to geometric group theory such as nilpotent and solvable groups, amenable groups, Thompson’s groups, groups of dynamical origins, self-similar groups, and more. These other categories of groups have a long history in the study of geometric group theory. The focus of this conference is to bring together researchers who specialize in these topics to encourage fruitful discussions regarding open questions in geometric group theory outside of the realm of hyperbolic groups. The conference website is at https://sites.google.com/view/beyondhyperbolicity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Skipper其他文献
GGS-groups acting on trees of growing degrees
GGS 基团作用于生长程度较高的树木
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rachel Skipper;Anitha Thillaisundaram - 通讯作者:
Anitha Thillaisundaram
A constructive proof that the Hanoi towers group has non-trivial rigid kernel
河内塔群具有非平凡刚性核的建设性证明
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Rachel Skipper - 通讯作者:
Rachel Skipper
On the Cantor–Bendixson rank of the Grigorchuk group and the Gupta–Sidki 3 group
关于 Grigorchuk 群和 Gupta-Sidki 3 群的 Cantor-Bendixson 秩
- DOI:
10.1016/j.jalgebra.2020.02.034 - 发表时间:
2018 - 期刊:
- 影响因子:0.9
- 作者:
Rachel Skipper;Phillip R. Wesolek - 通讯作者:
Phillip R. Wesolek
Almost-automorphisms of trees, cloning systems and finiteness properties
树的近自同构、克隆系统和有限性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Rachel Skipper;M. C. B. Zaremsky - 通讯作者:
M. C. B. Zaremsky
Finiteness properties for relatives of braided Higman–Thompson groups
辫状 Higman-Thompson 群的亲属的有限性
- DOI:
10.4171/ggd/731 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Rachel Skipper;Xiaolei Wu - 通讯作者:
Xiaolei Wu
Rachel Skipper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Skipper', 18)}}的其他基金
Group Actions on Trees and Boundaries of Trees
树木和树木边界的集体行动
- 批准号:
2343739 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Group Actions on Trees and Boundaries of Trees
树木和树木边界的集体行动
- 批准号:
2005297 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似国自然基金
基于修正Battelle双曲线模型的埋地输气管道止裂控制研究
- 批准号:12172270
- 批准年份:2021
- 资助金额:61.00 万元
- 项目类别:面上项目
基于修正Battelle双曲线模型的埋地输气管道止裂控制研究
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
全工序法加工超减比双曲线齿轮的双面同步成形机理及其设计方法研究
- 批准号:51805555
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
磁光材料的近场辐射传热增强及调控研究
- 批准号:51806070
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
双曲线型三体问题下小行星附近集群编队飞行的轨道演化与控制
- 批准号:11772024
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
- 批准号:
2896389 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Studentship
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
- 批准号:
2785744 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Studentship
Algebraic Hyperbolicity and Lang Conjecture
代数双曲性和 Lang 猜想
- 批准号:
RGPIN-2019-04775 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolicity with Singularities and Coexistence via Smoothing
双曲性与奇点以及通过平滑的共存
- 批准号:
2154378 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant