Strong Coupling in Microcavities for Enhancing Photostability of High-Performance Organic Semiconductors

微腔中的强耦合可增强高性能有机半导体的光稳定性

基本信息

  • 批准号:
    1956431
  • 负责人:
  • 金额:
    $ 38.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In this project funded by the Chemical Structure, Dynamics, and Mechanisms A (CSDM-A) program of the Chemistry Division, Professor Oksana Ostroverkhova of Oregon State University is exploring a new route for improving the stability of carbon-based electronics (organic semiconductors) when they are exposed to light. Organic semiconductors are of interest due to their low cost and tunable properties. A broad range of applications, from photovoltaics to three-dimensional displays, have been demonstrated. Wide commercialization of organic electronics has been hindered by their relatively low stability when exposed to common environmental factors such as light and air. In this project, very thin films of organic semiconductor materials are placed in tiny microcavities, where they interact with light, creating hybrid light-matter states known as polaritons. Professor Ostroverkhova and her students are studying the effects of these polaritons on the speed and outcome of chemical reactions that cause the organic semiconductors to deteriorate. They are using light-absorption and theoretical modeling to study how properties of polaritons could be used to slow down degradation of the organic semiconductor molecules and to promoting self-healing if degradation does occur. The project integrates fundamental chemistry and physics with materials design and device technologies and provides educational resources and infrastructure for students involved in the project. Graduate and undergraduate students gain experience in the emergent field of polariton chemistry, and in advanced spectroscopy and numerical modeling techniques.The PI carries out a systematic investigation of how the properties of hybrid light-matter states and of the “dark” states (due to molecules not coupled to the cavity) control the rates of chemical reactions responsible for photodegradation and recovery of organic semiconductors. High-performance organic semiconductor model systems are used to quantify strong exciton-photon coupling-controlled enhancement of photostability depending on the photodegradation pathway in non-interacting (“isolated”) molecules and in molecular aggregates and to establish the feasibility for cavity-coupled vibrational states to promote reversal of the photodegradation. The broader impact of this project is in its potential impact on resolving the stability bottleneck of organic electronic devices and on the development of polaritonic devices, as well as student training, as mentioned above.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个由化学结构,动力学和机制A(CSDM-A)计划资助的项目中,俄勒冈州立大学的Oksana Ostroverkhova教授正在探索一条新的途径,以改善碳基电子(有机半导体)的稳定性,当它们暴露于光线时。有机半导体由于其低成本和可调节性能而引起人们的关注。已经证明了从光伏到三维显示器的广泛应用。当暴露于常见环境因素(如光和空气)时,有机电子产品的广泛商业化受到了相对较低的稳定性的阻碍。在这个项目中,有机半导体材料的非常薄的膜放置在微小的微腔中,在那里与光相互作用,从而形成了混合的轻质物质状态,称为Polaritons。 Ostroverkhova教授和她的学生正在研究这些偏光子对导致有机半导体检测到的化学反应速度和结果的影响。他们使用光吸附和理论模型来研究如何使用极性子的特性来减慢有机半导体分子的降解,并在发生降解时促进自我修复。该项目将基本化学和物理学与材料设计和设备技术相结合,并为参与该项目的学生提供教育资源和基础设施。研究生和本科生在北极星化学的新兴领域以及高级光谱和数值建模技术方面获得了经验。PI对杂交光态态的性质和“黑暗状态”的性质进行了系统的投资(由于分子对cavity not covity not cavity covity not cavity sectors and sem secy photections photection and photsication andode and recesplion cousease cousease cousease cousease cousecony rypodation secousecation sectional couseption sectional sectotical sectotical secouseation。高性能有机半导体模型系统用于量化强烈的令人兴奋的光子耦合控制的光稳定性增强,这取决于非交互(“隔离”)分子的光降解途径和分子聚集体中的光降解途径,并在促进恢复的振动振动状态的可行性中,并确定了恢复循环的可行性。该项目的更广泛影响是其潜在的影响,对解决有机电子设备的稳定性瓶颈以及偏光型设备的发展以及学生培训的开发,如上所述。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响来评估NSF的法定任务,并被认为是诚实的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exciton Polariton-Enhanced Photodimerization of Functionalized Tetracene
功能化并四苯的激子极化增强光二聚化
  • DOI:
    10.1021/acs.jpcc.1c06881
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Puro, Richard;Van Schenck, Jonathan D.;Center, Reid;Holland, Emma K.;Anthony, John E.;Ostroverkhova, Oksana
  • 通讯作者:
    Ostroverkhova, Oksana
Exciton Polaritons Reveal “Hidden” Populations in Functionalized Pentacene Films
激子极化子揭示功能化并五苯薄膜中的“隐藏”族群
  • DOI:
    10.1021/acs.jpcc.1c08257
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Van Schenck, Jonathan D.;Goldthwaite, Winston T.;Puro, Richard;Anthony, John E.;Ostroverkhova, Oksana
  • 通讯作者:
    Ostroverkhova, Oksana
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oksana Ostroverkhova其他文献

Role of temperature in controlling performance of photorefractive organic glasses.
温度在控制光折变有机玻璃性能中的作用。
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Oksana Ostroverkhova;Oksana Ostroverkhova;M. He;R. Twieg;W. Moerner
  • 通讯作者:
    W. Moerner

Oksana Ostroverkhova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oksana Ostroverkhova', 18)}}的其他基金

Designing light-matter hybrid states for high-performance organic (opto)electronics
设计高性能有机(光)电子学的光-物质混合态
  • 批准号:
    1808258
  • 财政年份:
    2018
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Standard Grant
SusChEM: Naturally produced fungal compounds for sustainable (opto)electronics
SusChEM:用于可持续(光)电子产品的天然真菌化合物
  • 批准号:
    1705099
  • 财政年份:
    2017
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Standard Grant
Designing Intermolecular Interactions for High-Performance Small-Molecule Bulk Heterojunctions
设计高性能小分子体异质结的分子间相互作用
  • 批准号:
    1207309
  • 财政年份:
    2012
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Continuing Grant
CAREER: Charge Carrier Dynamics in Organic Semiconductors: from Macroscopic to Microscopic Level
职业:有机半导体中的载流子动力学:从宏观到微观水平
  • 批准号:
    0748671
  • 财政年份:
    2008
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

过渡金属硫族化物中强非线性激子与微腔光子的强耦合及其量子态调控
  • 批准号:
    12304347
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于表面等离激元微腔与量子体系强耦合的THz重复频率飞秒脉冲研究
  • 批准号:
    12104261
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于表面等离激元微腔与量子体系强耦合的THz重复频率飞秒脉冲研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于二维半导体与等离激元微腔强耦合的全光神经网络非线性激活函数机理与调控
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
贵金属-微腔复合结构中光与受限体系强耦合作用的量子相干控制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    60 万元
  • 项目类别:

相似海外基金

Coupling and Interference Dynamics of Complex Quanta in Semiconductor Microcavities
半导体微腔中复杂量子的耦合和干涉动力学
  • 批准号:
    16H04003
  • 财政年份:
    2016
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Light-matter coupling and optical properties of organic single crystal microcavities
有机单晶微腔的光-物质耦合和光学特性
  • 批准号:
    15H03974
  • 财政年份:
    2015
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Strong and weak coupling in ZnSe-based monolithic microcavities with lateral confinement
具有横向约束的 ZnSe 基整体微腔的强弱耦合
  • 批准号:
    63321440
  • 财政年份:
    2008
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Research Grants
Positioning of single quantum dots inside microcavities - coupling of individual quantum dots
微腔内单个量子点的定位 - 单个量子点的耦合
  • 批准号:
    21664841
  • 财政年份:
    2006
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Research Units
Strong-Coupling of Quantum Dots and Microcavities for Efficient Single Photon Sources and Quantum Logic
量子点和微腔的强耦合,用于高效的单光子源和量子逻辑
  • 批准号:
    0621723
  • 财政年份:
    2006
  • 资助金额:
    $ 38.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了