CNS Core: Medium: Accurate Anytime Learning for Energy andTimeliness in Software Systems
CNS 核心:中:随时准确学习软件系统的能量和及时性
基本信息
- 批准号:1956180
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern software systems increasingly rely on deep neural networks to perform a wide range of tasks, such as natural language translation and autonomous driving. The key to their success is that deep neural networks can well approximate these difficult tasks. Unfortunately, the more accurate the approximation, the more resources required. When deployed on mobile devices or autonomous vehicles those resource needs directly impact people as the time or energy/battery required to produce an answer. This project tackles this crucial problem by developing sound engineering methods to make disciplined tradeoffs between neural network accuracy and resource usage in software systems. The proposed work will take an interdisciplinary approach. Its first thrust will design novel neural networks that efficiently produce a series of outputs, instead of just a single output, such that the output accuracy will increase with increasing resources. The second thrust will develop new resource management software that automatically adjusts both underlying system settings and one or multiple neural networks to meet high-level software accuracy and energy requirements. The third will create tools for automatically analyzing the software context where neural networks are used, inferring accuracy and resource requirements for neural networks and identifying inefficient use of neural networks.The project has the potential to improve the efficiency and reliability of software that incorporates neural networks, and hence improve people's daily life experiences. Software developers will benefit from greater flexibility in neural network design, greater assurance that the neural networks they deploy will meet their accuracy and resource requirements, and greater understanding of how the neural network impacts the rest of their software systems. Additionally, the project will create many educational opportunities through enhanced classroom projects and creation of research opportunities for undergraduates, broadening the participation in computing.All of the data, code, results, and artifacts of this project will be made publicly available through the webpage https://alert.cs.uchicago.edu/. They will be available on-line for a period of at least five years following the completion of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代软件系统越来越依赖深度神经网络来执行各种任务,例如自然语言翻译和自动驾驶。他们成功的关键是深度神经网络可以很好地近似这些困难的任务。不幸的是,近似值越准确,需要的资源就越多。 当部署在移动设备或自动驾驶汽车上时,这些资源需求会直接影响人们,因为产生答案所需的时间或能源/电池。 该项目通过开发完善的工程方法来解决这一关键问题,以在神经网络准确性和软件系统中的资源使用之间进行严格的权衡。拟议的工作将采取跨学科的方法。其第一个目标是设计新颖的神经网络,有效地产生一系列输出,而不仅仅是单个输出,这样输出精度将随着资源的增加而提高。第二个重点将开发新的资源管理软件,自动调整底层系统设置和一个或多个神经网络,以满足高水平的软件准确性和能源要求。第三个项目将创建自动分析使用神经网络的软件上下文、推断神经网络的准确性和资源需求以及识别神经网络的低效使用的工具。该项目有潜力提高包含神经网络的软件的效率和可靠性,从而改善人们的日常生活体验。 软件开发人员将受益于神经网络设计的更大灵活性,更好地保证他们部署的神经网络将满足其准确性和资源要求,以及更好地了解神经网络如何影响其软件系统的其余部分。 此外,该项目将通过加强课堂项目和为本科生创造研究机会,扩大对计算的参与,创造许多教育机会。该项目的所有数据、代码、结果和工件将通过网页 https 公开提供://alert.cs.uchicago.edu/。该项目完成后,它们将在网上提供至少五年的时间。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proxima: accelerating the integration of machine learning in atomistic simulations
- DOI:10.1145/3447818.3460370
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Yuliana Zamora;Logan T. Ward;G. Sivaraman;Ian T. Foster;H. Hoffmann
- 通讯作者:Yuliana Zamora;Logan T. Ward;G. Sivaraman;Ian T. Foster;H. Hoffmann
Are Machine Learning Cloud APIs Used Correctly?
- DOI:10.1109/icse43902.2021.00024
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Chengcheng Wan;Shicheng Liu;H. Hoffmann;M. Maire;Shan Lu
- 通讯作者:Chengcheng Wan;Shicheng Liu;H. Hoffmann;M. Maire;Shan Lu
GOAL: Supporting General and Dynamic Adaptation in Computing Systems
- DOI:10.1145/3563835.3567655
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Ahsan Pervaiz;Yao-Hsiang Yang;Adam Duracz;F. Bartha;R. Sai;Connor Imes;Robert Cartwright;K. Palem;Shan Lu;Henry Hoffmann
- 通讯作者:Ahsan Pervaiz;Yao-Hsiang Yang;Adam Duracz;F. Bartha;R. Sai;Connor Imes;Robert Cartwright;K. Palem;Shan Lu;Henry Hoffmann
Growing Efficient Deep Networks by Structured Continuous Sparsification
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Xin Yuan;Pedro H. P. Savarese;M. Maire
- 通讯作者:Xin Yuan;Pedro H. P. Savarese;M. Maire
Automated Testing of Software that Uses Machine Learning APIs
- DOI:10.1145/3510003.3510068
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Chengcheng Wan;Shicheng Liu;Sophie Xie;Yifan Liu;H. Hoffmann;M. Maire;Shan Lu
- 通讯作者:Chengcheng Wan;Shicheng Liu;Sophie Xie;Yifan Liu;H. Hoffmann;M. Maire;Shan Lu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shan Lu其他文献
Modulation of carotenoid accumulation in transgenic potato by inducing chromoplast formation with enhanced sink strength.
通过诱导有色体形成和增强的库强度来调节转基因马铃薯中的类胡萝卜素积累。
- DOI:
10.1007/978-1-60761-723-5_6 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
J. Van Eck;Xiangjun Zhou;Shan Lu;Li Li - 通讯作者:
Li Li
The efficacy of a novel tomato extracts formulation on skin aging and pigmentation: A randomized, double-blind, parallel-controlled trial
新型番茄提取物配方对皮肤衰老和色素沉着的功效:一项随机、双盲、平行对照试验
- DOI:
10.1016/j.jdsct.2024.100005 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Silu Zhang;Shan Lu;Yun Wang;Jiayi Ni;Guoxun Xiao - 通讯作者:
Guoxun Xiao
Structure of the voltage-gated calcium channel Cav1.1 at 3.6 angstrom resolution
电压门控钙通道 Cav1.1 的结构,分辨率为 3.6 埃
- DOI:
10.2210/pdb5gjv/pdb - 发表时间:
2016 - 期刊:
- 影响因子:64.8
- 作者:
Jianping Wu;Zhen Yan;Zhangqiang Li;X. Qian;Shan Lu;Mengqiu Dong;Qiang Zhou;N. Yan - 通讯作者:
N. Yan
Proceedings of the 8th Workshop on Programming Languages and Operating Systems
- DOI:
10.1145/2818302 - 发表时间:
2015-10 - 期刊:
- 影响因子:0
- 作者:
Shan Lu - 通讯作者:
Shan Lu
Analyzing persistent state interactions to improve state management
分析持久状态交互以改进状态管理
- DOI:
10.1145/1140277.1140321 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Chad Verbowski;Emre Kıcıman;B. Daniels;Yi;R. Roussev;Shan Lu;Juhan Lee - 通讯作者:
Juhan Lee
Shan Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shan Lu', 18)}}的其他基金
CSR: Medium: Improving the Interface between Machine Learning and Software Systems
CSR:中:改进机器学习和软件系统之间的接口
- 批准号:
2313190 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2020 ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)
NSF 学生旅费资助 2020 年 ACM 国际编程语言和操作系统架构支持会议 (ASPLOS)
- 批准号:
1936025 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Student Travel Support for 2016 USENIX Annual Technical Conference
2016 年 USENIX 年度技术会议的学生旅行支持
- 批准号:
1632170 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CSR: Medium:Collaborative Research:Holistic, Cross-Site, Hybrid System Anomaly Debugging for Large Scale Hosting Infrastructures
CSR:中:协作研究:大规模托管基础设施的整体、跨站点、混合系统异常调试
- 批准号:
1514256 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
1546543 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CAREER: Combating Performance Bugs in Software Systems
职业:对抗软件系统中的性能错误
- 批准号:
1514189 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
XPS: FULL: CCA: Production-Run Failure Recovery Based Approach to Reliable Parallel Software
XPS:完整:CCA:基于生产运行故障恢复的可靠并行软件方法
- 批准号:
1439091 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CAREER: Combating Performance Bugs in Software Systems
职业:对抗软件系统中的性能错误
- 批准号:
1054616 - 财政年份:2011
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Fighting Concurrency Bugs through Effect-Oriented Approaches
通过面向效果的方法对抗并发错误
- 批准号:
1018180 - 财政年份:2010
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似国自然基金
中等质量丰中子核区的新核结构模型方法
- 批准号:
- 批准年份:2020
- 资助金额:18 万元
- 项目类别:专项基金项目
伏隔核D1/D2共表达中等多棘神经元在孤独症小鼠社交奖赏障碍中的作用及机制研究
- 批准号:81901381
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
星系中心的中等质量黑洞研究
- 批准号:11473062
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
过渡区中等质量原子核结构的配对壳模型研究
- 批准号:11305101
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
中等和大质量黑洞的潮汐瓦解及其吸积与辐射
- 批准号:10873015
- 批准年份:2008
- 资助金额:42.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CNS Core: Medium: Privacy-Preserving and Censorship-Resistant Domain Name System
CNS 核心:中:隐私保护和抗审查域名系统
- 批准号:
2310927 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
- 批准号:
2343964 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant