CNS Core: Medium: Resource Constrained Reinforcement Learning for Computing Systems

CNS 核心:中:计算系统的资源受限强化学习

基本信息

  • 批准号:
    1955997
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Reinforcement Learning has surfaced as a promising algorithmic paradigm for online decision making and control. Recent efforts demonstrate impressive results, but with relatively unlimited computational resources, data, and training. However, many real-world decision-making and control problems require real-time decisions but are severely constrained in terms of throughput, latency, memory, and power. Existing algorithms are employed in software on general purpose processors, and do not translate well to real-timeresource-constrained computation in hardware. This project will develop new algorithmic paradigms as well as hardware acceleration primitives that work in sync to enable real-time reinforcement learning at scale in embedded applications. From the algorithmic perspective, this work will study efficiency in computational resource tradeoffs, and design reinforcement learning algorithms that efficiently adapt to given hardware constraints and hardware primitives. From the hardware perspective, this work will design new hardware primitives that support the developed reinforcement learning algorithms for real-time applications in a storage- and energy-efficient manner.Our reinforcement learning algorithms, analyses, and experiments will shed new insights about how to make optimal trade-offs between performance and different system constraints such as memory, power, and latency. The research will be guided by systems applications including switch scheduling for network routers, resource management for data centers, network congestion control, memory management for computers, and adaptive sensing for wireless networks and the Internet of things. The outcomes of this project have the potential to transform how data centers, communication networks, and wireless systems are managed. Applications beyond computer and network systems include operational challenges in large-scale systems, such as inventory management and resource allocation, or low latency control problems that arise in brain-machine interfaces. The project also includes an extensive outreach plan that involves women and underrepresented minorities in computing research in reinforcement learning from an algorithmic and architecture-level perspective.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
强化学习已成为用于在线决策和控制的有希望的算法范式。最近的努力表明了令人印象深刻的结果,但具有相对无限的计算资源,数据和培训。但是,许多现实世界的决策和控制问题需要实时决策,但在吞吐量,延迟,记忆和权力方面受到严格限制。现有的算法用于通用处理器的软件中,并且不能很好地转化为硬件中的真实托管限制的计算。该项目将开发新的算法范式以及同步工作的硬件加速度基础,以在嵌入式应用程序中进行大规模实时增强学习。从算法的角度来看,这项工作将研究计算资源折衷的效率,并设计强化学习算法,这些算法有效地适应了给定的硬件约束和硬件原始词。 From the hardware perspective, this work will design new hardware primitives that support the developed reinforcement learning algorithms for real-time applications in a storage- and energy-efficient manner.Our reinforcement learning algorithms, analyses, and experiments will shed new insights about how to make optimal trade-offs between performance and different system constraints such as memory, power, and latency.该研究将以系统应用程序为指导,包括网络路由器的开关计划,数据中心的资源管理,网络拥塞控制,计算机的内存管理以及用于无线网络和物联网的自适应感测。该项目的结果有可能改变数据中心,通信网络和无线系统的管理方式。计算机和网络系统以外的应用程序包括大规模系统中的操作挑战,例如库存管理和资源分配,或在脑机界面中出现的低潜伏期控制问题。该项目还包括一项广泛的外展计划,该计划涉及妇女和代表性不足的少数群体在计算从算法和建筑级别的研究中学习研究方面的研究。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力和更广泛影响的评估来进行评估的支持,这是值得的。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Trade-off Curve
  • DOI:
    10.1287/opre.2022.2397
  • 发表时间:
    2023-11-23
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Sinclair,Sean R.;Jain,Gauri;Yu,Christina Lee
  • 通讯作者:
    Yu,Christina Lee
Nonparametric Matrix Estimation with One-Sided Covariates
Nonasymptotic Analysis of Monte Carlo Tree Search
蒙特卡罗树搜索的非渐近分析
  • DOI:
    10.1287/opre.2021.2239
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Shah, Devavrat;Xie, Qiaomin;Xu, Zhi
  • 通讯作者:
    Xu, Zhi
CSI-Based Multi-Antenna and Multi-Point Indoor Positioning Using Probability Fusion
  • DOI:
    10.1109/twc.2021.3109789
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Emre Gonultacs;E. Lei;Jack Langerman;Howard Huang;Christoph Studer
  • 通讯作者:
    Emre Gonultacs;E. Lei;Jack Langerman;Howard Huang;Christoph Studer
Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christina Yu其他文献

A Novel Bi-Specific T-Cell Engager Targeting ILT3 Is Potently Effective in Multiple Myeloma
  • DOI:
    10.1182/blood-2022-167584
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Francesco Di Meo;Anjushree Iyer;Keith Akama;Christina Yu;Rujin Cheng;Annamaria Cesarano;Silvia Marino;Arafat Aljoufi;Rajesh Soni;Julie M Roda;James Sissons;Ly P Vu;Monica L. Guzman;Kun Huang;David G. Roodman;Fabiana Perna
  • 通讯作者:
    Fabiana Perna
3152 – GENOMICS OF MULTIPLE MYELOMA DICTATES THE EXPRESSION OF CAR T-CELL TARGETS
  • DOI:
    10.1016/j.exphem.2020.09.159
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christina Yu;Brian Walker;David Roodman;Kun Huang;Michel Sadelain;Fabiana Perna
  • 通讯作者:
    Fabiana Perna
Repurposing everyday technologies to provide just-in-time visual supports to children with intellectual disability and autism: a pilot feasibility study with the Apple Watch®
重新利用日常技术为智力障碍和自闭症儿童提供及时的视觉支持:Apple Watch® 的试点可行性研究
  • DOI:
    10.1080/20473869.2017.1305138
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    R. Schlosser;Amanda M. O’Brien;Christina Yu;Jennifer Abramson;Anna A Allen;Suzanne Flynn;H. Shane
  • 通讯作者:
    H. Shane
Status of Newer Chemotherapeutic Strategies for the Treatment of Metastatic Gastric Cancer
转移性胃癌新化疗策略的现状
  • DOI:
    10.2165/00024669-200504010-00005
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Varadhachary;Christina Yu;J. Ajani
  • 通讯作者:
    J. Ajani
Repurposing Consumer Products as a Gateway to Just-in-Time Communication
重新利用消费产品作为即时沟通的门户
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Amanda M. O’Brien;Meghan O'Brien;R. Schlosser;Christina Yu;Anna A Allen;Suzanne Flynn;John Costello;H. Shane
  • 通讯作者:
    H. Shane

Christina Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christina Yu', 18)}}的其他基金

CAREER: CCF: CIF: Randomized Experimentation for Systems with Time-varying Dynamics and Network Interference
职业:CCF:CIF:具有时变动态和网络干扰的系统的随机实验
  • 批准号:
    2337796
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CRII: CIF: Generalizations for Matrix and Tensor Estimation
CRII:CIF:矩阵和张量估计的概括
  • 批准号:
    1948256
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant

相似国自然基金

中等质量丰中子核区的新核结构模型方法
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目
伏隔核D1/D2共表达中等多棘神经元在孤独症小鼠社交奖赏障碍中的作用及机制研究
  • 批准号:
    81901381
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
星系中心的中等质量黑洞研究
  • 批准号:
    11473062
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
过渡区中等质量原子核结构的配对壳模型研究
  • 批准号:
    11305101
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
中等和大质量黑洞的潮汐瓦解及其吸积与辐射
  • 批准号:
    10873015
  • 批准年份:
    2008
  • 资助金额:
    42.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CNS Core: Medium: Privacy-Preserving and Censorship-Resistant Domain Name System
CNS 核心:中:隐私保护和抗审查域名系统
  • 批准号:
    2310927
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
  • 批准号:
    2343964
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了