Collaborative Research: Dynamic Thermal Radiation Control using Crumpled 2D-Xene Materials for Wearable Devices
合作研究:使用褶皱 2D-Xene 材料对可穿戴设备进行动态热辐射控制
基本信息
- 批准号:1935775
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical:Wearable devices pose unique challenges for thermal management. The cooling or heating system must be flexible and able to adapt to changing conditions. For example, direct sunlight can have a strong heating effect. Conventional cooling or heating systems for thermal radiation control, however, are based on rigid structures and cannot adapt to changing conditions. Thermal radiation control for wearable devices requires a novel mechanism to selectively and dynamically modulate light absorption and infrared emission. There are many examples in nature that can change color or regulate body temperature using surface structures. Inspired by unique examples in nature such as desert ants and chameleons, the PIs will create a selective emitter and integrate it with a stretchable polymer substrate to enable dynamic thermal radiation control. The concept is based on a controllable variation in the morphology of two-dimensional (2D) materials such as graphene and phosphorene. These materials, called 2D-Xenes, are a novel platform to control thermal radiation in a reversible manner. The research will lead to a better understanding of relationships morphology, spectral emissivity, and temperature in 2D materials. In turn, the work will breakthroughs in thermal management of wearable devices. The PIs will integrate research and teaching and establish an outreach program that will spark the scientific interest of K-12 students, underrepresented students, and veterans. The PIs will also organize collaborative outreach events across the participating institutions. Joint workshops will expose students to state-of-the-art research and education opportunities in the PIs' respective laboratories.Technical:Over the past several decades, advances in our knowledge of controlling electricity and light has made revolutionary progress in the field of electronics and photonics, but our knowledge of controlling heat has made relatively little progress. The PIs aim to add significant contributions to the scientific community by presenting novel material designs of thermal radiation control and identifying novel mechanisms of dynamic thermal radiation control for wearable devices. The main objectives of this project are to establish a fundamental understanding of relationships between microscale-to-nanoscale morphology, spectral emissivity, and temperature using 2D-Xene materials such as graphene and phosphorene and to enable dynamic thermal radiation control for wearable devices. The PIs will combine complementary expertise in nanomechanics and thermal sciences to demonstrate unique morphology control in 2D-Xene materials via mechanical-straining-induced crumpling and investigate the effects of varying crumpling levels in thermal properties through computational and experimental approaches. The major hypothesis of the proposed research is that strain-induced morphology variations in crumpled 2D-Xene materials lead to selective changes in the emissivity spectrum and to significant changes in temperature for wearable devices. The controllable strain-induced morphology variation in the proposed material design allows quantitative experimental investigations, which will reveal characteristics of morphology-dependent emissivity, and emissivity-dependent temperature. The project will elucidate solar absorption and infrared emission phenomena in crumpled 2D-Xene materials via rigorous coupled-wave analysis and finite-difference time-domain computations. The project will identify the limits of thermal radiation control and present viable pathways of thermal management for wearable devices. For instance, strains induced by a wrist movement can change the morphology of the 2D-Xene material and the 2D-Xene material-based selective emitter will provide dynamic thermal radiation control. Through this work, the project will explain how artificial periodicities created by crumpled 2D-Xene materials lead to emissivity and temperature modulations and enable predictive modeling for wearable devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:可穿戴设备给热管理带来了独特的挑战。冷却或加热系统必须灵活并且能够适应不断变化的条件。例如,直射阳光可以产生很强的加热效果。然而,用于热辐射控制的传统冷却或加热系统基于刚性结构,无法适应不断变化的条件。可穿戴设备的热辐射控制需要一种新颖的机制来选择性地动态调节光吸收和红外发射。自然界中有很多可以利用表面结构改变颜色或调节体温的例子。受到沙漠蚂蚁和变色龙等自然界独特例子的启发,PI 将创建一种选择性发射器,并将其与可拉伸聚合物基板集成,以实现动态热辐射控制。该概念基于石墨烯和磷烯等二维 (2D) 材料形态的可控变化。这些材料称为 2D-Xenes,是一种以可逆方式控制热辐射的新型平台。该研究将有助于更好地理解二维材料的形态、光谱发射率和温度之间的关系。反过来,这项工作也将在可穿戴设备的热管理方面取得突破。 PI 将整合研究和教学,并建立一个外展计划,以激发 K-12 学生、代表性不足的学生和退伍军人的科学兴趣。 PI 还将在参与机构之间组织合作推广活动。联合研讨会将使学生在 PI 各自的实验室中获得最先进的研究和教育机会。技术:在过去的几十年里,我们控制电和光的知识的进步在电子领域取得了革命性的进步和光子学,但我们在控制热量方面的知识进展相对较小。 PI 旨在通过提出热辐射控制的新颖材料设计并确定可穿戴设备动态热辐射控制的新颖机制,为科学界做出重大贡献。该项目的主要目标是使用石墨烯和磷烯等 2D-Xene 材料,建立对微米级到纳米级形态、光谱发射率和温度之间关系的基本了解,并实现可穿戴设备的动态热辐射控制。 PI 将结合纳米力学和热科学方面的互补专业知识,通过机械应变引起的褶皱展示 2D-Xene 材料的独特形态控制,并通过计算和实验方法研究不同褶皱水平对热性能的影响。该研究的主要假设是,褶皱 2D-Xene 材料中应变引起的形态变化会导致发射率光谱的选择性变化以及可穿戴设备温度的显着变化。所提出的材料设计中可控应变引起的形貌变化允许定量实验研究,这将揭示形态相关的发射率和发射率相关的温度的特征。该项目将通过严格的耦合波分析和有限差分时域计算来阐明褶皱 2D-Xene 材料中的太阳吸收和红外发射现象。该项目将确定热辐射控制的局限性,并为可穿戴设备提供可行的热管理途径。例如,手腕运动引起的应变可以改变 2D-Xene 材料的形态,并且基于 2D-Xene 材料的选择性发射器将提供动态热辐射控制。通过这项工作,该项目将解释由皱褶 2D-Xene 材料产生的人工周期性如何导致发射率和温度调制,并为可穿戴设备实现预测建模。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strain Engineering of Low‐Dimensional Materials for Emerging Quantum Phenomena and Functionalities
用于新兴量子现象和功能的低维材料应变工程
- DOI:10.1002/adma.202107362
- 发表时间:2022-02
- 期刊:
- 影响因子:29.4
- 作者:Kim, Jin Myung;Haque, Md Farhadul;Hsieh, Ezekiel Y.;Nahid, Shahriar Muhammad;Zarin, Ishrat;Jeong, Kwang‐Yong;So, Jae‐Pil;Park, Hong‐Gyu;Nam, SungWoo
- 通讯作者:Nam, SungWoo
Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system
受人类视觉识别系统启发,采用 MoS2 有机异质结构的弯曲神经形态图像传感器阵列
- DOI:10.1038/s41467-020-19806-6
- 发表时间:2020-11
- 期刊:
- 影响因子:16.6
- 作者:Choi, Changsoon;Leem, Juyoung;Kim, Minsung;Taqieddin, Amir;Cho, Chullhee;Cho, Kyoung Won;Lee, Gil Ju;Seung, Hyojin;Bae, Hyung Jong;Song, Young Min;et al
- 通讯作者:et al
Atomically Smooth Graphene‐Based Hybrid Template for the Epitaxial Growth of Organic Semiconductor Crystals
用于有机半导体晶体外延生长的原子级光滑石墨烯混合模板
- DOI:10.1002/adfm.202008813
- 发表时间:2020-12-21
- 期刊:
- 影响因子:19
- 作者:N. Nguyen;H. Lee;Kangkyun Baek;Min Seok Yoo;Hansol Lee;Hyungsub Lim;Shinyoung Choi;Cheol‐Joo Kim;Sungwoo Nam;Kilwon Cho
- 通讯作者:Kilwon Cho
Strongly enhanced electromechanical coupling in atomically thin transition metal dichalcogenides
原子薄过渡金属二硫属化物中机电耦合的强烈增强
- DOI:10.1016/j.mattod.2020.12.021
- 发表时间:2021-02
- 期刊:
- 影响因子:24.2
- 作者:Haque, Md Farhadul;Snapp, Peter;Kim, Jin Myung;Wang, Michael Cai;Bae, Hyung Jong;Cho, Chullhee;Nam, SungWoo
- 通讯作者:Nam, SungWoo
Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices
用于石墨烯传感器器件的多轴可拉伸剪纸图案网格设计
- DOI:10.1007/s12274-020-2662-7
- 发表时间:2020-01
- 期刊:
- 影响因子:9.9
- 作者:Lee, Hyo Chan;Hsieh, Ezekiel Y.;Yong, Keong;Nam, SungWoo
- 通讯作者:Nam, SungWoo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SungWoo Nam其他文献
Opportunities for Nanomaterials in Stretchable and Free‐Form Displays
纳米材料在可拉伸和自由形状显示器中的机遇
- DOI:
10.1002/smsc.202300143 - 发表时间:
2024-01-29 - 期刊:
- 影响因子:0
- 作者:
Yeageun Lee;Weilin Guan;Ezekiel Y. Hsieh;SungWoo Nam - 通讯作者:
SungWoo Nam
A sustainable approach to large area transfer of graphene and recycling of the copper substrate
- DOI:
10.1039/c7tc02487h - 发表时间:
2017-08 - 期刊:
- 影响因子:6.4
- 作者:
Michael Cai Wang;Widianto P. Moestopo;Satoshi Takekuma;Shama Farabi Barna;Richard T. Haasch;SungWoo Nam - 通讯作者:
SungWoo Nam
Depolarization Field-Induced Photovoltaic Effect in Graphene/α-In2Se3/Graphene Heterostructures.
石墨烯/α-In2Se3/石墨烯异质结构中的去极化场诱导光伏效应。
- DOI:
10.1021/acsnano.3c11558 - 发表时间:
2024-05-21 - 期刊:
- 影响因子:17.1
- 作者:
S. Nahid;SungWoo Nam;A. M. van der Z;e;e - 通讯作者:
e
A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity
- DOI:
10.1039/c6nr09338h - 发表时间:
2017-01 - 期刊:
- 影响因子:6.7
- 作者:
Minsu Kim;Pilgyu Kang;Juyoung Leem;SungWoo Nam - 通讯作者:
SungWoo Nam
Role of Thin Film Adhesion on Capillary Peeling.
薄膜粘附力对毛细管剥离的作用。
- DOI:
10.1021/acs.nanolett.1c03494 - 发表时间:
2021-11-17 - 期刊:
- 影响因子:10.8
- 作者:
Jingcheng Ma;Jin Myung Kim;M. J. Hoque;Kamila J Thompson;SungWoo Nam;David G Cahill;Nenad Miljkovic - 通讯作者:
Nenad Miljkovic
SungWoo Nam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SungWoo Nam', 18)}}的其他基金
Collaborative Research: Control of Contact Friction of Van der Waals Heterostructures
合作研究:范德华异质结构接触摩擦的控制
- 批准号:
2306039 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Control of Contact Friction of Van der Waals Heterostructures
合作研究:范德华异质结构接触摩擦的控制
- 批准号:
2306039 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
BRITE Pivot: Dynamic Strain Engineering of Atomically Thin Semiconductors
BRITE Pivot:原子薄半导体的动态应变工程
- 批准号:
2135734 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Corrugated Graphene Superlattice Structures by Strain-induced Shrink Nanomanufacturing
职业:通过应变诱导收缩纳米制造波纹石墨烯超晶格结构
- 批准号:
2209157 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic Thermal Radiation Control using Crumpled 2D-Xene Materials for Wearable Devices
合作研究:使用褶皱 2D-Xene 材料对可穿戴设备进行动态热辐射控制
- 批准号:
2201054 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Corrugated Graphene Superlattice Structures by Strain-induced Shrink Nanomanufacturing
职业:通过应变诱导收缩纳米制造波纹石墨烯超晶格结构
- 批准号:
1554019 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
面向动态边缘微服务网络的柔性异常感知及规避方法研究
- 批准号:62372297
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多信号协同响应的核酸组分动态网络分析新方法研究
- 批准号:22304023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑“风险-收益-额度-利率”动态匹配的个人消费信贷决策方法研究
- 批准号:72371067
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
CNTs/Mg复合材料成型机理及动态冲击下的微观损伤机理研究
- 批准号:52371102
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
限域拥挤微环境下的液-液相分离机制及其动态行为调控研究
- 批准号:22305031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318851 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344490 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant