IGE: Adaptive Professional Training (APT) in STEM Graduate Education

IGE:STEM 研究生教育中的适应性专业培训 (APT)

基本信息

项目摘要

The remarkable expansion of science and technology into our society over the last several decades have created an exciting landscape of career opportunities for students trained in science, technology, engineering, and mathematics (STEM). During this time, STEM graduate education has continued to rely largely on traditional learning models. These learning models historically have not emphasized professional skills development and career exploration, now recognized as key to long-term career success in STEM fields. Many institutions encourage students to address career and professional development needs through optional extra-curricular opportunities. The sporadic nature of these opportunities makes it difficult for students and faculty to learn about programs and to use them for effective learning. Moreover, when professional development and career exploration are not intentionally built into the arc of graduate training and assessed for effectiveness, graduate programs risk poor use of resources and an inconsistent training experience. This National Science Foundation Innovations in Graduate Education (IGE) award to the University of Michigan will develop an adaptive professional training (APT) system that will gather opportunities across the institution from different levels (e.g. department, college, university, external) into a single system. The data and knowledge gained from the system will help to guide skill development for graduate students.This project will test the idea that providing a structured learning framework for professional development guided by formative mentor feedback and artificial intelligence-directed recommendations will enable more effective professional skill-building and student career success. The proposed platform, the Adaptive Professional Training (APT) learning management system (LMS) will integrate the following key innovations: (1) a user-friendly online hub of learning opportunity listings across the institution and beyond linked with defined by core professional skill competencies, (2) adaptive and iterative learning recommendations tailored to individual needs and interests based on both mentor and trainee input, (3) portfolio building, and (4) program assessment capabilities to enable evidence-based educational policy and resource optimization. This APT LMS represents a new flexible learning paradigm by which diverse professional training opportunities can be intentionally integrated into STEM graduate education. We will test whether use of the APT LMS by a test student cohort, compared to a control student cohort, will promote more intentional time investment in professional development and more uniform improvement in defined competencies, like science communication and increased awareness of learning resources. We predict that this innovative educational approach will integrate student and mentor input, enabling planning, documentation, and engagement in a systematic manner, leading to more effective acquisition of the professional skills associated with student career success. The Innovations in Graduate Education (IGE) program is focused on research in graduate education. The goals of IGE are to pilot, test and validate innovative approaches to graduate education and to generate the knowledge required to move these approaches into the broader community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年中,科学和技术向我们的社会扩张了,为接受科学,技术,工程和数学培训的学生(STEM)创造了令人兴奋的职业机会。在此期间,STEM研究生教育在很大程度上继续依赖传统的学习模型。从历史上看,这些学习模型并未强调专业技能发展和职业探索,现在被认为是STEM领域长期职业成功的关键。许多机构鼓励学生通过可选的课外机会来满足职业和专业发展需求。这些机会的零星性质使学生和教职员工很难学习课程并将其用于有效学习。此外,当专业发展和职业探索没有故意内置在研究生培训的弧线中并评估有效性时,研究生课程可能会使用不良利用资源和不一致的培训经验。这项国家科学基金会研究生教育的创新(IGE)颁发了密歇根大学的奖项,将开发一种自适应专业培训(APT)系统,该系统将从不同级别(例如系,大学,大学,外部)从机构中收集机会。从系统中获得的数据和知识将有助于指导研究生的技能发展。该项目将测试以下想法,即在由形成性导师反馈和人工智能指导的建议指导下为专业发展提供结构化学习框架,将使更有效的专业技能建设和学生职业生涯成功。 拟议的平台,自适应专业培训(APT)学习管理系统(LMS)将整合以下关键创新:(1)用户友好的在线学习机会列表中的用户友好的在线学习枢纽,以及与核心专业技能能力所定义的(2)基于个人需求和基于个人和培训的核心学习建议和利益的核心技能和利益的核心和迭代率,并根据两者和培训的培训(3),(3)(3)实现基于证据的教育政策和资源优化的能力。该APT LMS代表了一种新的灵活学习范式,可以将多种专业培训机会故意纳入STEM研究生教育。与对照学生队列相比,我们将测试测试学生队列对APT LMS的使用是否会促进在专业发展中的更多意识时间投资,并在定义能力方面的提高,例如科学沟通和增加对学习资源的认识。我们预测,这种创新的教育方法将以系统的方式整合学生和导师的意见,促进计划,文档和参与,从而更有效地获得与学生职业成功相关的专业技能。研究生教育(IGE)计划的创新侧重于研究生教育研究。 IGE的目标是试点,测试和验证创新方法来研究生教育,并产生将这些方法转移到更广泛社区所需的知识。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary O'Riordan其他文献

Mary O'Riordan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

意识障碍康复的神经血管跨模态信息耦合预测-评估模型与自适应调控策略
  • 批准号:
    62376190
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向高性能计算的指令级自适应睿频加速芯片关键技术研究
  • 批准号:
    62374100
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于异步混合事件触发通信机制的自适应分布式优化控制研究
  • 批准号:
    62303096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于非驾驶姿态多维特征的自动驾驶接管风险态势辨识与自适应调控策略
  • 批准号:
    52372325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
复杂煤岩条件下掘进机高效低能耗截割自适应解耦传控机制研究
  • 批准号:
    52304117
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Training Biomedical Research Teams for Rigor and Reproducibility in Data Science
培训生物医学研究团队以确保数据科学的严谨性和可重复性
  • 批准号:
    10723223
  • 财政年份:
    2023
  • 资助金额:
    $ 49.6万
  • 项目类别:
Evidence-based intervention to improve walking engagement in El Paso, Texas.
德克萨斯州埃尔帕索的循证干预措施旨在提高步行参与度。
  • 批准号:
    10626491
  • 财政年份:
    2023
  • 资助金额:
    $ 49.6万
  • 项目类别:
Project INSPIRE – (Interprofessional Simulation Program for Clinical Resilience and Empathy) for healthcare teams caring for birthing individuals with substance use disorder in Utah
INSPIRE 项目 –(临床复原力和同理心跨专业模拟项目)针对犹他州照顾患有物质使用障碍的新生儿的医疗团队
  • 批准号:
    10748245
  • 财政年份:
    2023
  • 资助金额:
    $ 49.6万
  • 项目类别:
Enhancing early care and education through reflective supervision to promote adaptive emotion regulation in young children
通过反思性监督加强早期保育和教育,促进幼儿的适应性情绪调节
  • 批准号:
    10597014
  • 财政年份:
    2022
  • 资助金额:
    $ 49.6万
  • 项目类别:
Innate and adaptive defenses against SARS-COV-2 in the oral cavity during acute unvaccinated and breakthrough infections
急性未接种疫苗和突破性感染期间口腔针对 SARS-COV-2 的先天和适应性防御
  • 批准号:
    10667248
  • 财政年份:
    2022
  • 资助金额:
    $ 49.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了