HDR TRIPODS: Collaborative Research: Foundations of Greater Data Science
HDR TRIPODS:协作研究:大数据科学的基础
基本信息
- 批准号:1934962
- 负责人:
- 金额:$ 81.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The University of Rochester and Cornell University jointly establish the Greater Data Science Cooperative Institute (GDSC). The GDSC is based on two founding tenets. The first is that enduring advances in data science require combining techniques and viewpoints across electrical engineering, mathematics, statistics, and theoretical computer science. The investigators' goal is to forge a consensus perspective on data science that transcends any individual field. The second is that data-science research must be grounded in an application domain. This helps to ensure that assumptions about the availability and quality of data are realistic, and it allows methodological results to be tested experimentally as well as theoretically. As such, the GDSC aims to consider applications in medicine and healthcare, an important application domain and one for which advances in data science can have a direct, positive impact on society. The GDSC aims to tackle foundational questions that are motivated by problems in healthcare, obtain solutions that fuse domain expertise with application-agnostic methodologies, and ultimately yield scientific advances that impact the way healthcare is provided. The GDSC aims to leverage the physical proximity of the two institutions, and the unique strengths in each of the core disciplines above and in medicine.The GDSC's cross-disciplinary research directions include: (i) Topological Data Analysis. The challenges that high-dimensional, incomplete, and noisy data present are great, but in many applications, exploiting the topological nature of the problem is possible. GDSC aims to develop new fundamental methods and theory to rigorously explore the promise of this unique approach. (ii) Data Representation. Data compression, embeddings, and dimension reduction play a fundamental role in data science. Inspired by new core challenges in biomedical imaging, genomics, and neural-spike training data, GDSC aims to develop novel source models and distortion measures, and ultimately seek a unifying theoretical framework across domains and disciplines. (iii) Network & Graph Learning. Many of the fundamental challenges in applying data science to non-homogeneous populations are best explored through a network or graph structure. GDSC aims to develop new techniques for parameter-dependent eigenvalue problems in spectral community detection, density-estimation methods on networks, and a theoretical framework for time-varying graphical models to study dynamic variable relations in time-evolving networks. (iv) Decisions, Control & Dynamic Learning. Sequential decisions are high-stakes in medicine. GDSC aims to utilize systems and control-engineering methods to improve health and disease management and develop new foundational theories and methods for label-efficient active learning and dynamic treatment regimes. (v) Diverse & Complex Modalities. Big data is complex data, and major new innovations are needed. GDSC aims to develop theoretical frameworks for inference under computational and privacy constraints and for high-dimensional data without parametric model assumptions. Text, image, and audio data present further challenges. To address such challenges, GDSC aims to explore transition systems for graph parsing of natural language and new fusion approaches for fully multimodal analysis. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罗彻斯特大学与康奈尔大学联合成立大数据科学合作研究院(GDSC)。 GDSC 基于两个创始原则。首先,数据科学的持久进步需要结合电气工程、数学、统计学和理论计算机科学的技术和观点。研究人员的目标是就超越任何单个领域的数据科学达成共识。第二是数据科学研究必须扎根于应用领域。这有助于确保有关数据的可用性和质量的假设是现实的,并且允许对方法结果进行实验和理论上的测试。因此,GDSC 旨在考虑医学和医疗保健领域的应用,这是一个重要的应用领域,数据科学的进步可以对社会产生直接、积极的影响。 GDSC 旨在解决由医疗保健问题引发的基本问题,获得将领域专业知识与应用程序无关的方法相融合的解决方案,并最终产生影响医疗保健提供方式的科学进步。 GDSC 旨在利用两个机构的地理邻近性以及上述每个核心学科和医学领域的独特优势。GDSC 的跨学科研究方向包括: (i) 拓扑数据分析。高维、不完整和噪声数据带来的挑战是巨大的,但在许多应用中,利用问题的拓扑性质是可能的。 GDSC 旨在开发新的基本方法和理论,以严格探索这种独特方法的前景。 (ii) 数据表示。数据压缩、嵌入和降维在数据科学中发挥着基础作用。受生物医学成像、基因组学和神经尖峰训练数据方面新的核心挑战的启发,GDSC 旨在开发新颖的源模型和失真测量,并最终寻求跨领域和学科的统一理论框架。 (iii) 网络和图学习。将数据科学应用于非同质群体的许多基本挑战最好通过网络或图形结构来探索。 GDSC 旨在开发解决光谱社区检测中参数相关特征值问题的新技术、网络密度估计方法以及时变图模型的理论框架,以研究时间演化网络中的动态变量关系。 (iv) 决策、控制和动态学习。在医学领域,连续决策是高风险的。 GDSC 旨在利用系统和控制工程方法来改善健康和疾病管理,并为标签高效的主动学习和动态治疗方案开发新的基础理论和方法。 (v) 多样且复杂的方式。大数据是复杂的数据,需要重大的新创新。 GDSC 旨在开发理论框架,用于计算和隐私约束下的推理以及无需参数模型假设的高维数据。文本、图像和音频数据提出了进一步的挑战。为了应对这些挑战,GDSC 旨在探索用于自然语言图解析的转换系统和用于完全多模态分析的新融合方法。该项目是美国国家科学基金会利用数据革命 (HDR) 大创意活动的一部分。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(61)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regularization by Adversarial Learning for Ultrasound Elasticity Imaging
超声弹性成像的对抗性学习正则化
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Mohammadi, Narges;Doyley, Marvin M.;Cetin, Mujdat.
- 通讯作者:Cetin, Mujdat.
Online Topology Inference from Streaming Stationary Graph Signals with Partial Connectivity Information
根据具有部分连接信息的流式固定图信号进行在线拓扑推断
- DOI:10.3390/a13090228
- 发表时间:2020-09
- 期刊:
- 影响因子:2.3
- 作者:Shafipour, Rasoul;Mateos, Gonzalo
- 通讯作者:Mateos, Gonzalo
Ultrasound Elasticity Imaging Using Physics-Based Models and Learning-Based Plug-and-Play Priors
使用基于物理的模型和基于学习的即插即用先验进行超声弹性成像
- DOI:10.1109/icassp39728.2021.9413652
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Mohammadi, Narges;Doyley, Marvin M.;Cetin, Mujdat
- 通讯作者:Cetin, Mujdat
Existence of similar point configurations in thin subsets of $${\mathbb {R}}^d$$
$${mathbb {R}}^d$$ 的薄子集中存在相似的点配置
- DOI:10.1007/s00209-020-02537-1
- 发表时间:2021-02
- 期刊:
- 影响因子:0.8
- 作者:Greenleaf, Allan;Iosevich, Ale;Mkrtchyan, Sevak
- 通讯作者:Mkrtchyan, Sevak
Outside Computation with Superior Functions
具有卓越功能的外部计算
- DOI:10.18653/v1/2021.naacl-main.233
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Riley, Parker;Gildea, Daniel
- 通讯作者:Gildea, Daniel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mujdat Cetin其他文献
Discriminative Methods for Classification of Asynchronous Imaginary Motor Tasks From EEG Data
根据脑电图数据对异步想象运动任务进行分类的判别方法
- DOI:
10.1109/tnsre.2013.2268194 - 发表时间:
2013-06-26 - 期刊:
- 影响因子:4.9
- 作者:
Jaime F. Delgado Saa;Mujdat Cetin - 通讯作者:
Mujdat Cetin
Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization
基于非二次正则化的特征增强合成孔径雷达成像
- DOI:
10.1109/83.913596 - 发表时间:
2001-04-01 - 期刊:
- 影响因子:0
- 作者:
Mujdat Cetin;W. C. Karl - 通讯作者:
W. C. Karl
Mujdat Cetin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mujdat Cetin', 18)}}的其他基金
NRT-HDR: Interdisciplinary Graduate Training in the Science, Technology, and Applications of Augmented and Virtual Reality
NRT-HDR:增强和虚拟现实科学、技术和应用的跨学科研究生培训
- 批准号:
1922591 - 财政年份:2019
- 资助金额:
$ 81.42万 - 项目类别:
Standard Grant
相似国自然基金
基于N3O-四齿三脚架配体非贵金属配合物的设计合成及其催化CO2还原性能研究
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:地区科学基金项目
柔性骨架铀酰配位聚合物的合成与性质研究
- 批准号:21671157
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934813 - 财政年份:2019
- 资助金额:
$ 81.42万 - 项目类别:
Standard Grant
HDR TRIPODS: Collaborative Research: Foundations of Greater Data Science
HDR TRIPODS:协作研究:大数据科学的基础
- 批准号:
1934985 - 财政年份:2019
- 资助金额:
$ 81.42万 - 项目类别:
Continuing Grant
Collaborative Research: TRIPODS Institute for Optimization and Learning
合作研究:TRIPODS 优化与学习研究所
- 批准号:
1925930 - 财政年份:2019
- 资助金额:
$ 81.42万 - 项目类别:
Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934931 - 财政年份:2019
- 资助金额:
$ 81.42万 - 项目类别:
Standard Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934843 - 财政年份:2019
- 资助金额:
$ 81.42万 - 项目类别:
Continuing Grant