New Directions in Thermodynamic Formalism for Geodesic Flows Beyond the Closed Riemannian Case
超越封闭黎曼情况的测地流热力学形式主义的新方向
基本信息
- 批准号:1954463
- 负责人:
- 金额:$ 28.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A fundamental question in dynamical systems, systems that model natural phenomena changing with time, is to understand their asymptotic behavior. That is, given knowledge of the present, what can we say about the distant future or distant past? In most situations, the answer must be given in terms of probability. This leads to the question of identifying and studying natural (invariant) probability measures. Thermodynamic formalism, which is a dynamical theory originally inspired by statistical mechanics, is a framework for answering this kind of question. The geodesic flow is the dynamical system given by moving at unit speed along paths that minimize distance. This flow has special importance because of its relationship with the geometry and topology of the underlying space. The geodesic flow has inspired many important developments in dynamical systems theory, in particular leading to the definitions on which hyperbolic dynamics is based. This research project pursues a distinctive vision for progress in this area, with focus on developing novel techniques suitable for application to geodesic flows in more general settings. The award also supports the training of graduate and undergraduate students.The project has four parts. Part 1 develops fundamental results in thermodynamic formalism suitable for applications to dynamical systems of geometric origin. The focus is on the non-compact world, building on previous advances made for closed non-positive curvature manifolds. Areas of interest include non-compact CAT(-1) spaces, non-positive curvature manifolds with cusps, and as a long-term goal, thermodynamics for the Weil-Petersson geodesic flow. Part 2 considers statistical and dynamical properties for equilibrium states, particularly Central Limit Theorems and second order differentiability. Part 3 develops a deeper dynamical understanding of geodesic flow for CAT(−1) spaces. We investigate analogues of the SRB measure, particularly in the setting of CAT(−1) metrics on closed surfaces. Part 4 concerns questions about Katok entropy rigidity in dynamical systems, particularly for non-compact surfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统(模拟随时间变化的自然现象的系统)的一个基本问题是理解它们的渐近行为,也就是说,在了解当前的情况下,我们对遥远的未来或遥远的过去能说什么?必须以概率的形式给出。这导致了识别和研究自然(不变)概率测度的问题,它是一种最初受统计力学启发的动力学理论,是回答此类问题的框架。流量是通过沿着最小距离的路径以单位速度移动而给出的动力系统,由于其与底层空间的几何和拓扑的关系,测地线流动激发了动力系统理论的许多重要发展,特别是导致了动力系统理论的发展。该研究项目追求该领域进展的独特愿景,重点是开发适用于更一般环境中测地线流动的新技术。该奖项还支持研究生和本科生的培训。 .该项目有四个部分。 1 开发了适用于几何起源动力系统的热力学形式的基本结果,重点是在非紧世界上,建立在封闭非正曲率流形的先前进展的基础上,感兴趣的领域包括非紧 CAT(-)。 1) 空间、带有尖点的非正曲率流形,并且作为长期目标,Weil-Petersson 测地流的热力学第 2 部分考虑了统计和动力学特性。对于平衡状态,特别是中心极限定理和二阶可微性,我们对 CAT(−1) 研究空间的测地流进行了更深入的动力学理解,特别是在 CAT(−1) 度量的设置中。第 4 部分涉及动力系统中 Katok 熵刚度的问题,特别是对于非紧凑表面。该奖项反映了 NSF 的法定使命,并通过使用基金会的知识进行评估,被认为值得支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unique Equilibrium States for Geodesic Flows on Flat Surfaces with Singularities
具有奇点的平坦表面上测地流的独特平衡态
- DOI:10.1093/imrn/rnac247
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Call, Benjamin;Constantine, David;Erchenko, Alena;Sawyer, Noelle;Work, Grace
- 通讯作者:Work, Grace
Fluctuations of Time Averages Around Closed Geodesics in Non-Positive Curvature
非正曲率下闭合测地线周围时间平均值的涨落
- DOI:10.1007/s00220-021-04062-6
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Thompson, Daniel J.;Wang, Tianyu
- 通讯作者:Wang, Tianyu
Equilibrium states for self‐products of flows and the mixing properties of rank 1 geodesic flows
流自积的平衡态和 1 阶测地流的混合特性
- DOI:10.1112/jlms.12517
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Call, Benjamin;Thompson, Daniel J.
- 通讯作者:Thompson, Daniel J.
Multifractal analysis of geodesic flows on surfaces without focal points
- DOI:10.1080/14689367.2021.1978394
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Kiho Park;Tianyu Wang
- 通讯作者:Kiho Park;Tianyu Wang
Measures of maximal entropy on subsystems of topological suspension semiflows
拓扑悬浮半流子系统的最大熵测度
- DOI:10.4064/sm201105-13-1
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Kucherenko, Tamara;Thompson, Daniel J.
- 通讯作者:Thompson, Daniel J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Thompson其他文献
Effects of Artificial Ultraviolet B Radiation on Plasma 25-Hydroxyvitamin D3 Concentrations in Juvenile Blanding's Turtles (Emydoidea blandingii)
人工紫外线 B 辐射对幼年布兰丁龟 (Emydoidea blandingii) 血浆 25-羟基维生素 D3 浓度的影响
- DOI:
10.5818/jhms-d-21-00039 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Amanda Hoskins;Daniel Thompson;M. Mitchell - 通讯作者:
M. Mitchell
Converting day treatment centers to supported employment programs in Rhode Island.
将罗德岛日间治疗中心转变为支持性就业计划。
- DOI:
10.1176/appi.ps.52.3.351 - 发表时间:
2001 - 期刊:
- 影响因子:3.8
- 作者:
D. Becker;G. Bond;Daniel McCarthy;Daniel Thompson;Haiyi Xie;G. McHugo;R. Drake - 通讯作者:
R. Drake
Fast and slow thinking applied to dementia: An animation explaining the relevance of Kahneman’s theory
快速和慢速思维应用于痴呆症:解释卡尼曼理论相关性的动画
- DOI:
10.53841/bpsfpop.2022.1.158.52 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Heather Birtles;Daniel Thompson;K. Gray;I. James - 通讯作者:
I. James
Daniel Thompson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Thompson', 18)}}的其他基金
SBIR Phase I: Thermal Insulation from Paper Mill Wastes
SBIR 第一阶段:利用造纸厂废物进行隔热
- 批准号:
1548414 - 财政年份:2016
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
CAREER: Entropy in dynamics: connections with geometry, algebraic numbers, and bioscience
职业:动力学中的熵:与几何、代数数和生物科学的联系
- 批准号:
1454864 - 财政年份:2015
- 资助金额:
$ 28.1万 - 项目类别:
Continuing Grant
Thermodynamic Formalism and Dynamical Systems Arising from Geometry
热力学形式主义和几何产生的动力系统
- 批准号:
1259311 - 财政年份:2012
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
Thermodynamic Formalism and Dynamical Systems Arising from Geometry
热力学形式主义和几何产生的动力系统
- 批准号:
1101576 - 财政年份:2011
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
Evolution of Integrated Phenotypic Plasticity: Geographic Variation and Genetic Constraints
综合表型可塑性的进化:地理变异和遗传限制
- 批准号:
9806775 - 财政年份:1998
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
Dissertation Research: Population Differentiation in Migratory Raptors
论文研究:迁徙猛禽的种群分化
- 批准号:
9321656 - 财政年份:1994
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
The Evolution of Diet-Induced Development Plasticity in HeadMorphology of Grasshoppers
饮食诱导的蚱蜢头部形态发育可塑性的演化
- 批准号:
8907386 - 财政年份:1990
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
相似国自然基金
基于固定路线营运车辆动力响应的桥梁快速巡检与状态评估方法研究
- 批准号:52378145
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
国家可持续议程创新示范区建设路径差异与发展路线图研究
- 批准号:42301326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于渔场不确定时空分布的远洋捕捞路线优化研究
- 批准号:72301225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
切换通信拓扑与不利道路线形耦合条件下多车队列系统协同控制
- 批准号:62303134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
气候变化对古丝绸之路交通路线变迁的影响研究
- 批准号:42371172
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Research Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Knowledge Transfer Network