LEAP-HI: Fighting Wildfires: A Data-Informed, Physics-Based Computational Framework for Probabilistic Risk Assessment and Mitigation and Emergency Response Management

LEAP-HI:扑灭野火:基于数据的、基于物理的概率风险评估、缓解和应急响应管理计算框架

基本信息

项目摘要

Destruction caused by wildfires in the US has significantly increased in the past two decades. While the federal government’s spending on wildfire fighting has been steadily increasing, wildfire severity has also been on the rise. The focus of this Leading Engineering for America's Prosperity, Health, and Infrastructure (LEAP-HI) project is the creation an overarching computational platform for wildfire risk management at multiple space and time scales. This vision will be accomplished by creating and integrating transdisciplinary scientific techniques in the fields of data analytics, computational modeling, and model-based inference. The objective is to develop scientific foundations for a live digital platform that evolves with new data and dynamically updates the long-term (seasons/months ahead) to short-term (weeks/days ahead) pre-ignition fire risks at regional and community scales, and predicts the post-ignition fire behavior in near-real-time at the fire front. Once developed, the computational platform will increase the efficiency of wildfire management process by providing actionable information to decision-makers for pre-ignition risk mitigation and post-ignition emergency response management. Involvement of key stakeholders and utility companies, preparation of future workforce, and K-12 outreach programs are integral parts of the project.The research promises to provide a rigorous computational approach to quantifying and predicting wildfire risk. Scientific advancements that are anticipated include: (i) an overarching computational platform for probabilistic wildfire loss assessment at different spatial and temporal scales that evolves with data as they become available; (ii) an integrated simulation framework including a wildfire model, urban-fire model, and socioeconomic model to predict the wildfire loss in terms of economic and social losses; (iii) a novel data-driven modeling approach for urban-fire simulation, and a new empirical model for change in quality-of-life (QoL) due to wildfire; (iv) new data collection modules and advanced data processing techniques to collect refined data, process and infuse different sources of data, and quantify uncertainty in the measurement data; and, (v) a Bayesian model inference framework to quantify modeling uncertainties and update the fire spread in ear-real-time by integrating new measurement data modules with the wildfire model. In perspective, the project aims to lay the scientific foundations of a holistic new computational platform to predict and monitor wildfire risk. The resulting technology has the potential to positively influence the wildfire management process, including the development of accurate actuarial strategies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年中,美国野火造成的破坏已大大增加。尽管联邦政府在野火战斗的支出一直在稳步增加,但野火严重性也在上升。这项领先的工程对美国繁荣,健康和基础设施(LEAP-HI)项目的重点是创建在多个时空和时间尺度上野火风险管理的总体计算平台。该愿景将通过在数据分析,计算建模和基于模型的推理领域中创建和整合跨学科科学技术来实现。目的是为实时数字平台开发科学基础,该平台随着新数据的发展,并在区域和社区范围内动态更新长期(季节/几个月)为短期(未来的几周/天)前发生火灾风险,并预测火灾近距离现实时期的近距离火灾行为。一旦开发,计算平台将通过向决策者提供可行的信息来提高野火管理流程的效率,以减轻预期风险和点火后应急响应管理。主要利益相关者和公用事业公司的参与,未来劳动力的准备以及K-12外展计划是该项目不可或缺的一部分。该研究有望提供一种严格的计算方法来量化和预测野火风险。预期的科学进步包括:(i)在不同的空间和临时尺度上,随着数据的可用数据,在不同的空间和临时量表上进行概率野火损失评估的总体计算平台; (ii)一个综合模拟框架,包括野火模型,城市火灾模型和社会经济模型,以预测经济和社会损失方面的野火损失; (iii)一种用于城市火灾模拟的新型数据驱动的建模方法,以及由于野火而导致的新经验模型(QOL)的新经验模型; (iv)新的数据收集模块和高级数据处理技术,以收集精致的数据,过程并注入不同的数据源,并量化测量数据中的不确定性; (v)贝叶斯模型推理框架,以量化建模不确定性并通过将新的测量数据模块与野火模型整合在一起,并在较早时间内更新火灾。从角度来看,该项目旨在奠定整体新计算平台的科学基础,以预测和监视野火风险。最终的技术有可能积极影响野火管理流程,包括制定准确的实际策略。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响来评估,被认为是宝贵的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coupled fire-atmosphere simulation of the 2018 Camp Fire using WRF-Fire
使用 WRF-Fire 对 2018 年营火进行火灾-大气耦合模拟
  • DOI:
    10.1071/wf22013
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Shamsaei, Kasra;Juliano, Timothy W.;Roberts, Matthew;Ebrahimian, Hamed;Kosovic, Branko;Lareau, Neil P.;Taciroglu, Ertugrul
  • 通讯作者:
    Taciroglu, Ertugrul
A Computationally Efficient Method for Updating Fuel Inputs for Wildfire Behavior Models Using Sentinel Imagery and Random Forest Classification
  • DOI:
    10.3390/rs14061447
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    DeCastro, Amy L.;Juliano, Timothy W.;Balch, Jennifer K.
  • 通讯作者:
    Balch, Jennifer K.
Tracking Wildfires With Weather Radars
使用天气雷达追踪野火
  • DOI:
    10.1029/2021jd036158
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lareau, Neil P.;Donohoe, Amanda;Roberts, Matthew;Ebrahimian, Hamed
  • 通讯作者:
    Ebrahimian, Hamed
Characterizing the Role of Moisture and Smoke on the 2021 Santa Coloma de Queralt Pyroconvective Event Using WRF‐Fire
使用 WRF–Fire 表征水分和烟雾对 2021 年圣科洛马德奎拉尔特火对流事件的作用
  • DOI:
    10.1029/2022ms003288
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Eghdami, Masih;Juliano, Timothy W.;Jiménez, Pedro A.;Kosovic, Branko;Castellnou, Marc;Kumar, Rajesh;Vila‐Guerau de Arellano, Jordi
  • 通讯作者:
    Vila‐Guerau de Arellano, Jordi
The Role of Fuel Characteristics and Heat Release Formulations in Coupled Fire-Atmosphere Simulation
燃料特性和放热配方在火焰-大气耦合模拟中的作用
  • DOI:
    10.3390/fire6070264
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shamsaei, Kasra;Juliano, Timothy W.;Roberts, Matthew;Ebrahimian, Hamed;Lareau, Neil P.;Rowell, Eric;Kosovic, Branko
  • 通讯作者:
    Kosovic, Branko
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hamed Ebrahimian其他文献

Efficiency and productivity of irrigation water based on water balance considering quality of return flows
  • DOI:
    10.1016/j.agwat.2020.106025
  • 发表时间:
    2020-03-31
  • 期刊:
  • 影响因子:
  • 作者:
    Hasti Kazem Attar;Hamideh Noory;Hamed Ebrahimian;Abdol-Majid Liaghat
  • 通讯作者:
    Abdol-Majid Liaghat
Integrating dynamic wildland fire position input with a community fire spread simulation: A case study of the 2018 Camp Fire
将动态荒地火灾位置输入与社区火灾蔓延模拟相结合:以 2018 年营地火灾为例
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Fernando Szasdi;Kasra Shamsaei;Neil P. Lareau;T. Juliano;B. Kosović;Hamed Ebrahimian;Negar Elhami
  • 通讯作者:
    Negar Elhami
A percolation model of unsaturated hydraulic conductivity using three-parameter Weibull distribution
使用三参数威布尔分布的非饱和导水率渗流模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Marzieh Zare Sourmanabad;S. Norouzi;Farhad Mirzaei;Brandon A. Yokeley;Hamed Ebrahimian;B. Ghanbarian
  • 通讯作者:
    B. Ghanbarian
Modeling Firebrand Spotting in WRF-Fire for Coupled Fire-Weather Prediction
对 WRF-Fire 中的火种发现进行建模,实现火灾与天气的耦合预测
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maria Frediani;Kasra Shamsaei;T. Juliano;B. Kosović;Jason Knievel;Sarah A. Tessendorf;Hamed Ebrahimian
  • 通讯作者:
    Hamed Ebrahimian
Calibration of infiltration, roughness and longitudinal dispersivity coefficients in furrow fertigation using inverse modelling with a genetic algorithm
  • DOI:
    10.1016/j.biosystemseng.2015.05.011
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amir Sedaghatdoost;Hamed Ebrahimian
  • 通讯作者:
    Hamed Ebrahimian

Hamed Ebrahimian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

有氧运动通过MeCP2乳酰化激活ZFP36转录促进TREM2hi巨噬细胞抗炎功能改善动脉粥样硬化的机制研究
  • 批准号:
    82372565
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
从新亚群Rel-Mo/CD72hi-Mφ中探索真武汤对“阳虚湿浊”型慢性肾衰心脏损伤的疗效机制
  • 批准号:
    82374406
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
SIRT5-线粒体代谢轴失调介导SORT1Hi肺泡巨噬细胞METs形成在围术期急性肺损伤中的作用及机制研究
  • 批准号:
    82371292
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Trem2(hi)巨噬细胞亚群维持干细胞稳态促骨再生的效应和机制研究
  • 批准号:
    82301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“母体-胎儿轴”探索罗伊氏乳杆菌HI120激活AHR调控miRNA/TLR4防治子代NEC的研究
  • 批准号:
    32370139
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

LEAP-HI: Towards a Paradigm of Thrombosis-Free Blood-contacting Devices
LEAP-HI:迈向无血栓血液接触装置的典范
  • 批准号:
    2245427
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Hydrogen Integration for Accelerated Energy Transitions Hub (HI-ACT)
氢能加速能源转型中心 (HI-ACT)
  • 批准号:
    EP/X038823/2
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Research Grant
LEAP-HI: GOALI: Accelerating Design for Additive Manufacturing of Smart Multimaterial Devices
LEAP-HI:GOALI:加速智能多材料设备增材制造的设计
  • 批准号:
    2401218
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
LEAP-HI: Compounding Risk Assessment and Mitigation Options for Building Infrastructure Experiencing Coastal Flooding-Related Saltwater Deterioration and Seismic Hazard
LEAP-HI:针对遭受沿海洪水相关的盐水恶化和地震灾害的基础设施建设的综合风险评估和缓解方案
  • 批准号:
    2245401
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
LEAP-HI: Automated Design for 3D Printing of Microfluidic Devices for Healthcare Applications
LEAP-HI:医疗保健应用微流控设备 3D 打印的自动化设计
  • 批准号:
    2245494
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了