CPS: Small: Mitigating Uncertainties in Computer Numerical Control (CNC) as a Cloud Service using Data-Driven Transfer Learning
CPS:小型:使用数据驱动的迁移学习减轻计算机数控 (CNC) 作为云服务的不确定性
基本信息
- 批准号:1931950
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer numerical control (CNC) is a critical feature of modern manufacturing machines. It provides automated control based on a set of programmed instructions, which traditionally run on a local computer that is physically tethered to the machine. This work envisions a future where manufacturing machines are controlled remotely over the Internet using CNC installed on cloud computers. Among several benefits over traditional CNC, cloud-based CNC holds promise to significantly improve the speed and accuracy of manufacturing machines at low cost. However, a major challenge with cloud-based CNC is that, somewhat like video streaming, it controls manufacturing machines primarily using pre-calculated commands that must be buffered to mitigate Internet transmission delays. For this reason, cloud-based CNC is susceptible to anomalies that result from delayed transmission of information on how the controlled machine is actually behaving. The award supports a scientific investigation into approaches for predicting impending anomalies from data gathered from past experience, and using the predictions to avoid incorrect control actions resulting from inadequate feedback. The U.S. stands to benefit economically from a transition from traditional to cloud-based CNC, since the U.S. is by far the market leader in cloud-based services. The project also will include outreach to U.S. companies, educational curriculum development to increase the U.S. talent pool in manufacturing and data analytics, and activities for middle schoolers in the Detroit area to inspire them to pursue careers in engineering.The objective of the project is to mitigate uncertainties associated with real-time control of manufacturing machines from the cloud using data-driven transfer learning. The knowledge gained will boost the performance of manufacturing machines at low cost by providing the machines with reliable cloud-based CNC. In cloud-based CNC, advanced feedforward control functionalities are transitioned to the cloud while fast feedback loops are retained locally. However, with emphasis on feedforward control, uncertainties in modeling the dynamic behavior of machines could degrade the reliability and performance of cloud-based CNC by causing failures, due to inaccurate control actions. The system will predict failures using measured signals and mitigate them in a redundant, cloud-based CNC architecture by switching control authority from a cloud controller to a back-up local controller in the event of an impending failure. To this end, a data-driven transfer learning framework will predict and minimize uncertainties using data obtained from other machines connected to cloud-based CNC. Such transfer learning leverages data from one source to learn a different, but related, target source. The framework will allow cloud-based CNC to: (i) learn from a combination of condition monitoring signals and past failure data to predict impending failures, (ii) reduce uncertainties by leveraging condition monitoring data to calibrate physical models whose parameters are functions of their inputs, and (iii) plan feasible trajectories for switching from a cloud to a local controller when an impending failure is detected. The project will address the shortcomings of existing transfer learning methods by: (i) predicting failure events from a combination of condition monitoring and past failure data, and (ii) calibration of physics-based models with functional parameters from condition monitoring data. The methods will be evaluated experimentally on a CPS test bed consisting of a 3D printer controlled from the cloud using a cloud-based CNC prototype.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机数控 (CNC) 是现代制造机器的一个关键特征。它提供基于一组编程指令的自动化控制,这些指令通常在物理上连接到机器的本地计算机上运行。这项工作设想了一个未来,使用安装在云计算机上的 CNC 通过互联网远程控制制造机器。与传统 CNC 相比,基于云的 CNC 具有诸多优势,有望以低成本显着提高制造机器的速度和精度。然而,基于云的 CNC 的一个主要挑战是,有点像视频流,它主要使用预先计算的命令来控制制造机器,这些命令必须进行缓冲以减轻互联网传输延迟。因此,基于云的 CNC 很容易出现由于受控机器实际行为信息延迟传输而导致的异常情况。该奖项支持对根据过去经验收集的数据预测即将发生的异常的方法进行科学调查,并利用预测来避免因反馈不足而导致不正确的控制行动。美国将从传统 CNC 到基于云的 CNC 的转型中受益,因为美国迄今为止是基于云的服务的市场领导者。 该项目还将包括对美国公司的推广、教育课程开发以增加美国制造和数据分析方面的人才库,以及为底特律地区的中学生开展活动以激励他们从事工程职业。该项目的目标是使用数据驱动的迁移学习减轻与从云端实时控制制造机器相关的不确定性。所获得的知识将为机器提供可靠的基于云的 CNC,从而以低成本提高制造机器的性能。在基于云的 CNC 中,先进的前馈控制功能转移到云端,同时快速反馈循环保留在本地。然而,在强调前馈控制的情况下,机器动态行为建模的不确定性可能会因控制行为不准确而导致故障,从而降低基于云的 CNC 的可靠性和性能。该系统将使用测量信号预测故障,并在即将发生故障时将控制权从云控制器切换到备用本地控制器,从而在基于云的冗余 CNC 架构中缓解故障。为此,数据驱动的迁移学习框架将使用从连接到基于云的 CNC 的其他机器获得的数据来预测并最大程度地减少不确定性。这种迁移学习利用一个来源的数据来学习不同但相关的目标来源。该框架将允许基于云的 CNC 能够:(i) 从状态监测信号和过去故障数据的组合中学习,以预测即将发生的故障,(ii) 通过利用状态监测数据来校准物理模型(其参数是其参数的函数),从而减少不确定性。输入,以及 (iii) 计划在检测到即将发生的故障时从云切换到本地控制器的可行轨迹。该项目将通过以下方式解决现有迁移学习方法的缺点:(i)结合状态监测和过去的故障数据预测故障事件,以及(ii)使用状态监测数据的功能参数校准基于物理的模型。这些方法将在 CPS 测试台上进行实验评估,该测试台由使用基于云的 CNC 原型从云控制的 3D 打印机组成。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional Principal Component Analysis for Extrapolating Multistream Longitudinal Data
用于外推多流纵向数据的函数主成分分析
- DOI:10.1109/tr.2020.3035084
- 发表时间:2019-03-09
- 期刊:
- 影响因子:5.9
- 作者:Seokhyun Chung;R. Kontar
- 通讯作者:R. Kontar
A Multi-Stage Approach for Knowledge-Guided Predictions With Application to Additive Manufacturing
应用于增材制造的知识引导预测的多阶段方法
- DOI:10.1109/tase.2022.3160420
- 发表时间:2022-07-01
- 期刊:
- 影响因子:5.6
- 作者:Seokhyun Chung;Cheng;Xiaozhu Fang;Raed Al Kontar;C. Okwudire
- 通讯作者:C. Okwudire
Intelligent feedrate optimization using a physics-based and data-driven digital twin
使用基于物理和数据驱动的数字孪生进行智能进给优化
- DOI:10.1016/j.cirp.2023.04.063
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Kim, Heejin;Okwudire, Chinedum E.
- 通讯作者:Okwudire, Chinedum E.
A linear hybrid model for enhanced servo error pre-compensation of feed drives with unmodeled nonlinear dynamics
用于增强进给驱动器伺服误差预补偿的线性混合模型,具有未建模的非线性动力学
- DOI:10.1016/j.cirp.2021.04.070
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Chou, Cheng;Duan, Molong;Okwudire, Chinedum E.
- 通讯作者:Okwudire, Chinedum E.
A Physics-Guided Data-Driven Feedforward Tracking Controller for Systems With Unmodeled Dynamics—Applied to 3D Printing
适用于未建模动力学系统的物理引导数据驱动前馈跟踪控制器 — 应用于 3D 打印
- DOI:10.1109/access.2023.3244194
- 发表时间:2022-06-23
- 期刊:
- 影响因子:3.9
- 作者:Cheng;Molong Duan;C. Okwudire
- 通讯作者:C. Okwudire
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chinedum Okwudire其他文献
Chinedum Okwudire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chinedum Okwudire', 18)}}的其他基金
Tackling Motion-Command-Induced Nonlinear Vibration in Manufacturing Machines Using Software Compensation
使用软件补偿解决制造机器中运动命令引起的非线性振动
- 批准号:
2054715 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Towards a Fundamental Understanding of a Simple, Effective and Robust Approach for Mitigating Friction in Nanopositioning Stages
合作研究:从根本上理解一种简单、有效和稳健的减轻纳米定位阶段摩擦的方法
- 批准号:
1855354 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Boosting the Speed and Accuracy of Vibration-Prone Manufacturing Machines at Low Cost through Software
通过软件以低成本提高易振动制造机器的速度和精度
- 批准号:
1825133 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Vibration Assisted Nanopositioning: An Enabler of Low-cost, High-throughput Nanotech Processes
振动辅助纳米定位:低成本、高通量纳米技术工艺的推动者
- 批准号:
1562297 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Dynamically Adaptive Feed Drive Systems for Smart and Sustainable Manufacturing
职业:用于智能和可持续制造的动态自适应进给驱动系统
- 批准号:
1350202 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Low-Cost and Energy-Efficient Vibration Reduction in Ultra-Precision Manufacturing Machines using Mode Coupling
使用模式耦合在超精密制造机器中实现低成本且节能的减振
- 批准号:
1232915 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
TSPO调控小胶质细胞能量代谢缓解癌性疼痛的作用机制研究
- 批准号:82371228
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“肾通于脑”理论探讨补肾填精法调控GPNMB介导的自噬缓解小胶质细胞免疫衰老重塑微环境防治AD的分子机制
- 批准号:82374166
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
rTMS上调小胶质细胞来源的NDST4缓解神经元焦亡改善脑梗死后神经功能的机制研究
- 批准号:82372568
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
电针治疗卒中后认知障碍新机制:下调HK2介导的海马Warburg效应调控小胶质细胞极化缓解神经炎症
- 批准号:82305403
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
消退素D1通过PERK通路调控小胶质细胞焦亡缓解神经病理性疼痛的机制研究
- 批准号:82301416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: Investigating and Mitigating Harmful Design in User-Generated Virtual World through Design Moderation
SaTC:核心:小型:通过设计审核调查和减轻用户生成的虚拟世界中的有害设计
- 批准号:
2326505 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
ROS scavenging nanoparticles for mitigating oxidative stress in osteoarthritis
ROS清除纳米颗粒可减轻骨关节炎的氧化应激
- 批准号:
10584738 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
SaTC: CORE: Small: An Automated Framework for Mitigating Single-Trace Side-Channel Leakage
SaTC:核心:小型:用于减轻单迹侧通道泄漏的自动化框架
- 批准号:
2241879 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Mitigating Threats of Physical-Domain Signal Injections on Security, Reliability, and Safety of Sensing and Control Systems
SaTC:核心:小型:减轻物理域信号注入对传感和控制系统的安全性、可靠性和安全性的威胁
- 批准号:
2231682 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Novel Pigment Sensing Pulse Oximeter Technology for Mitigating Racial Bias in Oxygen Saturation Measurements
新型颜料感应脉搏血氧仪技术可减少血氧饱和度测量中的种族偏见
- 批准号:
10599746 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别: