CBET-EPSRC: Grown Engineered Materials (GEMs): synthetic consortia for biomanufacturing tunable composites
CBET-EPSRC:生长工程材料 (GEM):生物制造可调复合材料的合成联盟
基本信息
- 批准号:1951942
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project was awarded through the "Special Guidelines for Submitting Collaborative Proposals under the Division of Chemical, Bioengineering, Environmental, and Transport Systems, the Division of Civil, Mechanical, and Manufacturing Innovation, and the Division of Electrical, Communications, and Cyber Systems - the UK Engineering and Physical Sciences Research Council (ENG-EPSRC) Lead Agency Activity" opportunity. This project is performed in collaboration with Imperial College, London, an institution in the UK.Nontechnical description: Nature is a rich source of strong, sustainable, and biodegradable materials. These are difficult to recreate and re-engineer at the molecular scale. Recent achievements in synthetic biology open the door to a new manufacturing paradigm, Grown Engineered Materials (GEMs). GEMs will be produced in the same way that materials are made in nature: by different types of living cells working together, with each cell type producing a unique polymer. This material can be used with little additional processing. GEMs offer a route to make new products, offer sustainable alternatives to existing industries (filtration, textiles, advanced composites) or yield entirely new sectors (sensing and responsive materials).Technical description: This project will use synthetic biology approaches to develop the first generation of GEMs. These will be produced by co-cultivating a set of engineered microbes. These microbes will produce Bacterial nanoCellulose (BC) fibers and Elastin-Like Polypeptides (ELPs) fused to carbohydrate-binding domains. These are both repetitive biopolymers, and each has industrially-attractive properties on its own. Bacterial-made nanocellulose is exceptionally pure, biocompatible, and possesses a high mechanical load capability. Yeast-made ELPs are environment-responsive and can be designed to collapse or extend due to changes in levels of salt, pH, or temperature. The project consists of four objectives to be run in parallel by the UK and US teams. These are designed to tackle the two key hurdles to realizing GEMs: rational protein polymer design and optimizing high-level secretion of proteins. The team at Imperial College, London will construct and characterize an ELP library, as well as establish initial co-culturing of ELP secreting yeast and BC producing bacteria. The team at University of California, Riverside will apply systems biology (subcellular RNA-seq, Ribo-seq, and computational modeling) and directed evolution to generate hypersecreting yeast strains, as well as assess and optimize their performance under co-culturing conditions. A fifth objective will showcase how novel properties can be programmed into GEMs by engineering at the DNA level.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目是通过“在化学,生物工程,环境和运输系统,民用,机械和制造创新部以及电气,通信和网络系统的分部提交协作建议下提交协作建议的特殊指南 - 英国工程和物理科学研究委员会(ENG -EPSRC)领导者Action Action Apercy”的机会”。该项目是与英国伦敦帝国学院合作进行的。非技术描述:自然是强大,可持续和可生物降解材料的丰富来源。这些很难在分子尺度上重新创建和重新设计。合成生物学的最新成就为新的制造范式,生长工程材料(GEMS)打开了大门。宝石将以与自然界生产的材料相同的方式产生:通过不同类型的活细胞一起工作,每种细胞类型都会产生独特的聚合物。该材料几乎没有其他处理。宝石提供了制造新产品,为现有行业(过滤,纺织品,高级复合材料)提供可持续替代方案的途径或产生全新领域(感应和响应材料)。技术描述:该项目将采用合成生物学方法来开发第一代宝石。这些将通过共同培养一组工程的微生物来产生。这些微生物将产生细菌纳米纤维素(BC)纤维和弹性蛋白样的多肽(ELP)(ELP),融合到碳水化合物结合域。这些都是重复的生物聚合物,并且独自具有工业吸引的特性。细菌制造的纳米纤维素异常纯净,具有生物相容性,并且具有高机械载荷能力。酵母菌的ELP具有环境响应性,可以设计成盐,pH或温度水平的变化而塌陷或延伸。该项目包括四个目标,由英国和美国团队并联。这些旨在应对实现宝石的两个关键障碍:理性蛋白质聚合物设计和优化蛋白质的高级分泌。伦敦帝国学院的团队将建造和描述ELP图书馆,并建立ELP分泌酵母和卑诗省生产细菌的初步共同培养。加利福尼亚大学Riverside的团队将应用系统生物学(细胞亚序列,Ribo-Seq和计算建模),并定向Evolution,以产生过度分泌酵母菌菌株,并评估和优化其在共培养条件下的性能。第五个目标将展示如何通过在DNA级别的工程来将新颖的属性编程为宝石。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响评估标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Wheeldon其他文献
人工RNAスイッチによる遺伝子操作と細胞運命制御(
使用人工 RNA 开关进行基因操作和细胞命运控制(
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ian Wheeldon;Javier Fernandez;Hojae Bae;Hirokazu Kaji;Ali Khademhosseini;笹倉 靖徳;Hidenori Koh,Ryosuke Nakajima,Keisuke Shida;齊藤博英 - 通讯作者:
齊藤博英
脊索動物ホヤにおけるセルロース合成酵素遺伝子の獲得とその機能
脊索动物海鞘纤维素合酶基因的获得及其功能
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ian Wheeldon;Javier Fernandez;Hojae Bae;Hirokazu Kaji;Ali Khademhosseini;笹倉 靖徳 - 通讯作者:
笹倉 靖徳
"Microscale biomaterials for tissue engineering" In Biomaterials for Tissue Engineering Applications: A Review of the Past and Future Trends, J. A. Burdick, R. L. Mauck, Eds. (pp. 119-138)
“用于组织工程的微型生物材料”,《组织工程应用的生物材料:过去和未来趋势的回顾》,J. A. Burdick、R. L. Mauck,编辑。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ian Wheeldon;Javier Fernandez;Hojae Bae;Hirokazu Kaji;Ali Khademhosseini - 通讯作者:
Ali Khademhosseini
Ian Wheeldon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Wheeldon', 18)}}的其他基金
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323984 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven engineering of the thermotolerant yeast Kluyveromyces marxianus
合作研究:耐热酵母克鲁维酵母的数据驱动工程
- 批准号:
2225878 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: MFB: Ultra-Fast Development of Portable Small Molecule Sensor-Actuators
合作研究:MFB:便携式小分子传感器执行器的超快速开发
- 批准号:
2128016 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
- 批准号:
1803630 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Controlling Cellular Physiology and Enzyme Localization for Enhanced Oleochemical Biosynthesis in Yeast
合作研究:控制细胞生理学和酶定位以增强酵母中的油脂化学生物合成
- 批准号:
1706545 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
SusChEM: Drop-in Hydrocarbon Fuels through Novel Integration of Biological and Catalytic Conversion of Cellulosic Biomass-Derived Sugars
SusChEM:通过纤维素生物质衍生糖的生物和催化转化的新型整合来直接使用碳氢化合物燃料
- 批准号:
1510697 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Intracellular localization of biosynthetic pathways for conversion of lipids to dicarboxylic acids in oleaginous yeast
合作研究:产油酵母中脂质转化为二羧酸的生物合成途径的细胞内定位
- 批准号:
1403264 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
- 批准号:
EP/Y032489/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant