Seminar on Stochastic Processes (SSP) 2020

随机过程研讨会(SSP)2020

基本信息

  • 批准号:
    1951535
  • 负责人:
  • 金额:
    $ 4.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-15 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The Seminar on Stochastic Processes 2020 will be held at Michigan State University in East Lansing, Michigan, on 5-7 March 2020. These seminars have been held annually since 1981. They have become a crucially important regular conference series for probabilists in North America, bringing together a diverse group of accomplished researchers, early-career investigators, and graduate students in probability and stochastic processes. The primary goal of SSP 2020 is to provide a platform for the dissemination of the most recent significant progress in research, and to enable participants to discuss their work with others. The five scholars who will be the main speakers at SSP 2020 were chosen for their prominence as researchers in stochastic processes, and for the breadth of their research areas as a group, to maximize the participants' exposure. SSP 2020 will include additional activities intended especially for new researchers and they will take the form of two 90-minute tutorial lectures delivered by a speaker selected by the Probability Subcommittee of the IMS New Researchers Committee and a panel discussion on topics of particular interest to early-career researchers. This conference will be an extraordinary opportunity for students and early-career researchers to learn the latest developments in probability and related topics, and to interact with leading researchers.Financial support to attend the conference will preferentially be given to graduate students, postdocs, women, and other under-represented or marginalized groups, as well as to early-career faculty who may not otherwise be able to attend the conference. The topics covered in this edition of SSP will include Brownian motion and Levy processes, stochastic analysis, stochastic partial differential equations, random matrix theory, fractional Brownian motion and rough path theory, random media, and application to fluid mechanics, statistical physics, climate science, and mathematical biology. More information will be curated and kept at the conference webpage: https://stt.natsci.msu.edu/events/ssp2020/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2020 年随机过程研讨会将于 2020 年 3 月 5 日至 7 日在密歇根州东兰辛的密歇根州立大学举行。这些研讨会自 1981 年以来每年举办一次。它们已成为北美概率学家至关重要的定期会议系列,汇集了概率和随机过程方面的不同群体的有成就的研究人员、早期职业调查人员和研究生。 SSP 2020 的主要目标是提供一个传播最新重大研究进展的平台,并使参与者能够与其他人讨论他们的工作。将在 2020 年 SSP 上担任主要发言人的五位学者之所以被选中,是因为他们作为随机过程研究人员的突出地位,以及他们作为一个群体的研究领域的广度,以最大限度地提高参与者的曝光度。 SSP 2020 将包括专门针对新研究人员的其他活动,这些活动将采取两场 90 分钟的教程讲座的形式,由 IMS 新研究人员委员会概率小组委员会选出的演讲者进行,并就早期研究人员特别感兴趣的主题进行小组讨论。 -职业研究人员。这次会议将为学生和早期职业研究人员提供一个绝佳的机会,让他们了解概率和相关主题的最新发展,并与领先的研究人员互动。参加会议的经济支持将优先给予研究生、博士后、女性、和其他代表性不足或边缘化群体,以及可能无法参加会议的早期职业教师。 本版 SSP 涵盖的主题将包括布朗运动和 Levy 过程、随机分析、随机偏微分方程、随机矩阵理论、分数布朗运动和粗糙路径理论、随机介质以及在流体力学、统计物理学、气候科学中的应用,和数学生物学。更多信息将在会议网页上整理和保存:https://stt.natsci.msu.edu/events/ssp2020/该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估,被认为值得支持影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yimin Xiao其他文献

Calculation of transient heat transfer through the envelope of an underground cavern using Z-transfer coefficient method
使用 Z 传递系数法计算地下洞穴围护结构的瞬态传热
  • DOI:
    10.1016/j.enbuild.2012.01.040
  • 发表时间:
    2012-05
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yimin Xiao;Xichen Liu;Rongrong Zhang
  • 通讯作者:
    Rongrong Zhang
Lower functions and Chung's LILs of the generalized fractional Brownian motion
广义分数布朗运动的下限函数和 Chung 的 LIL
Propagation of singularities for the stochastic wave equation
随机波动方程的奇点传播
Hausdorff measure of the graph of fractional Brownian motion
Properties of Strong Local Nondeterminism and Local Times of Stable Random Fields
  • DOI:
    10.1007/978-3-0348-0021-1_18
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yimin Xiao
  • 通讯作者:
    Yimin Xiao

Yimin Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yimin Xiao', 18)}}的其他基金

Conference: Workshop on Stochastic Analysis, Random Fields, and Applications
会议:随机分析、随机场和应用研讨会
  • 批准号:
    2309847
  • 财政年份:
    2023
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
  • 批准号:
    1855185
  • 财政年份:
    2019
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Fractals, Multifractals, and Stochastic Partial Differential Equations
合作研究:分形、多重分形和随机偏微分方程
  • 批准号:
    1607089
  • 财政年份:
    2016
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Estimation, Prediction, and Extremes of Multivariate Random Fields
多元随机场的估计、预测和极值
  • 批准号:
    1612885
  • 财政年份:
    2016
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Extreme Value Theory and Fixed-Domain Asymptotics of Multivariate Random Fields
多元随机场的极值理论和定域渐近
  • 批准号:
    1309856
  • 财政年份:
    2013
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Analysis of Stochastic Partial Differential Equations
NSF/CBMS 数学科学区域会议 - 随机偏微分方程分析
  • 批准号:
    1241389
  • 财政年份:
    2012
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant

相似国自然基金

α-稳定过程驱动的随机微分方程的极限行为研究
  • 批准号:
    12301175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于滑坡冲击-结构破坏随机动力过程的建筑物易损性概率定量评价
  • 批准号:
    42377189
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于模型的认知雷达动作策略随机优化过程非合作反演方法研究
  • 批准号:
    62301031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
最大值型迭代树过程与随机游动
  • 批准号:
    12271351
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
随机矩阵乘积与随机环境中多型分枝过程
  • 批准号:
    12271062
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Seminar on Stochastic Processes 2023
会议:随机过程研讨会 2023
  • 批准号:
    2244835
  • 财政年份:
    2023
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Seminar on Stochastic Processes 2022
随机过程研讨会 2022
  • 批准号:
    2151258
  • 财政年份:
    2022
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Seminar on Stochastic Processes 2019
2019年随机过程研讨会
  • 批准号:
    1850630
  • 财政年份:
    2019
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
2017 Seminar on Stochastic Processes
2017年随机过程研讨会
  • 批准号:
    1663552
  • 财政年份:
    2017
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
Seminar on Stochastic Processes 2016
2016年随机过程研讨会
  • 批准号:
    1550644
  • 财政年份:
    2016
  • 资助金额:
    $ 4.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了