Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
基本信息
- 批准号:1951314
- 负责人:
- 金额:$ 21.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to identify the physical processes underlying rock friction. It has strong implications for our understanding of earthquakes and associated hazards. Earthquakes occur periodically; their recurrence is due to the "stick-slip" behavior of large fractures in the Earth’s crust, called faults. A fault "sticks" in the time periods between earthquakes and "slips" during earthquakes. The stick-slip motion arises from the interaction of the elastic (spring-like) behavior of relatively cold rocks and the frictional behavior of faults. Rock friction has been extensively studied in the laboratory because of its relevance to earthquakes. Empirical equations – that is, derived from experimental data rather than based on known mechanisms – describe how friction varies with time and sliding velocity. Computer models use these equations to reproduce a wide range of earthquake-related phenomena. However, the physical and/or chemical processes underlying these equations are still largely unknown; identifying and quantifying them is critical for applying laboratory results to geological faults. Here, the research team investigates these processes at the microscale and nanoscale of the asperities (bumps) on the fault surface where fault rocks are in actual contact. They use atomic force microscopy and nanoindentation to mimic the behavior of single asperities and to measure their behavior at small scales. Feeding the results of experiments into computer simulations that incorporate larger scales, they model and predict the frictional behaviors of rock surfaces. Ultimately, the researchers aim to develop new equations that better capture the behavior of earthquake faults and improve hazard assessment. This project also provides support to two graduate students and a postdoctoral associate. It fosters training for undergraduate students and outreach to high-school students and teachers, notably from underrepresented groups in science.Empirical rate-and-state friction laws, which describe the frictional sliding behavior of faults, are commonly used in earthquake models. Their physical basis is largely unknown, particularly for the equations that describe the evolution of the "state" of a frictional interface. This renders the extrapolation of laboratory results to geological faults fraught with uncertainty. A common explanation of frictional "state" is that it represents the true area of contact on a fault surface; this area evolves (increases) with time or slip due to asperity yielding and creep. An emerging alternative is that contacts strengthen due to chemical bonding at contact junctions. The team previously demonstrated – using single-asperity atomic force microscopy and coordinated with computer simulations, and with nanoindentation experiments - that both mechanisms may contribute to the increase of friction with time (or slip), an effect termed frictional aging. A unifying hypothesis is that asperity creep and chemical bonding occur simultaneously at asperity contacts, but that aging is due primarily to chemical bonding. In this scenario, contact area and chemical bonding are inextricably linked, with asperity yielding and creep providing the contact area upon which chemical bonding occurs. Here, the research team will conduct novel experiments and simulations at the nexus of geophysics, chemistry, materials science, and mechanics to unveil the physical basis for rate-and-state friction. Specifically, they seek to 1) elucidate the roles of yielding and creep of asperities in friction, 2) explore the influences of temperature and fluid chemistry on surface aging and 3) elucidate the roles of slip versus time in state evolution. They employ specimens made of silica and quartz and, for the first time, amorphous alumina, sapphire and feldspar. Results from single-asperity experiments are integrated into simulations which describe the behavior of rough rock surfaces in contact via multiscale modeling. The models incorporate asperity yielding and creep with chemical bonding effects for the first time, allowing new insights into rate-and-state friction behavior of rock surfaces and faults. This project may lead to a paradigm shift with transformative implications for understanding earthquake nucleation, and for the assessment of earthquake hazards and associated risks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在确定岩石危险的物理过程。 (春季)相对冷岩的行为和岩石的摩擦行为。但是,与地震相关的现象。岩石的实际接触是模仿单个覆盖率的行为,并在小尺度上测量其行为。评估。这是对Aiterface的演变是由于接触连接处的化学粘合而导致的触点。一种摩擦衰老的作用。具体而言,他们寻求1)阐明摩擦中的屈服和蠕变的作用,2)探索温度对表面衰老的影响,3)阐明了由二氧化硅和石英制成的滑移时间的作用。而且,第一次,无定形的氧化铝,蓝宝石和长石。和相关风险。该奖项反映了NSF的任务,并使用基金会的知识分子优点和更广泛的影响审查标准提出了值得评估的评估。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physical Origin of the Mechanochemical Coupling at Interfaces
- DOI:10.1103/physrevlett.126.076001
- 发表时间:2021-02-18
- 期刊:
- 影响因子:8.6
- 作者:Li, Zhuohan;Szlufarska, Izabela
- 通讯作者:Szlufarska, Izabela
Chemical Creep and Its Effect on Contact Aging
- DOI:10.1021/acsmaterialslett.2c00356
- 发表时间:2022-06
- 期刊:
- 影响因子:11.4
- 作者:Zhuohan Li;I. Szlufarska
- 通讯作者:Zhuohan Li;I. Szlufarska
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Izabela Szlufarska其他文献
Izabela Szlufarska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Izabela Szlufarska', 18)}}的其他基金
Collaborative Research: A Multidiscilpinary Study to Determine the Fundamental Mechanisms of Rock Friction through Coordinated Experiments and Simulations
协作研究:通过协调实验和模拟确定岩石摩擦基本机制的多学科研究
- 批准号:
1549153 - 财政年份:2016
- 资助金额:
$ 21.3万 - 项目类别:
Continuing Grant
Friction and aging of silica: atomistic simulations for fundamental understanding of earthquake mechanics
二氧化硅的摩擦和老化:原子模拟有助于基本了解地震力学
- 批准号:
0910779 - 财政年份:2009
- 资助金额:
$ 21.3万 - 项目类别:
Standard Grant
CAREER: Molecular Basis for Viscoelastic Response on Nano-Mechanical Biosensors
职业:纳米机械生物传感器粘弹性响应的分子基础
- 批准号:
0747661 - 财政年份:2008
- 资助金额:
$ 21.3万 - 项目类别:
Standard Grant
Multimillion-Atom Molecular Dynamics Simulations of Superhard Nanocrystalline Ceramics
超硬纳米晶陶瓷的数百万原子分子动力学模拟
- 批准号:
0512228 - 财政年份:2005
- 资助金额:
$ 21.3万 - 项目类别:
Continuing Grant
相似国自然基金
零背景荧光信号的近红外罗丹明类γ-谷氨酰转肽酶荧光探针的理论设计与实验验证研究
- 批准号:32360236
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
金伯利岩岩浆上升过程中结晶分异与去气作用的实验研究
- 批准号:42302071
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
膝关节软骨退变多模态磁共振成像与软骨及滑膜相关生物标记物表达关系的实验研究
- 批准号:82360339
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
力学引导微纳结构三维组装的刚度增强策略与实验研究
- 批准号:12302217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 21.3万 - 项目类别:
Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2419423 - 财政年份:2024
- 资助金额:
$ 21.3万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 21.3万 - 项目类别:
Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
$ 21.3万 - 项目类别:
Continuing Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 21.3万 - 项目类别:
Standard Grant