COLLABORATIVE RESEARCH: GI CATALYTIC TRACK: Cyberinfrastructure for Intelligent High-Resolution Snow Cover Inference from Cubesat Imagery

合作研究:GI CATALYTIC Track:根据立方体卫星图像进行智能高分辨率积雪推断的网络基础设施

基本信息

  • 批准号:
    1947893
  • 负责人:
  • 金额:
    $ 4.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

The ability to observe the Earth from space at relevant spatial and temporal scales is key to understanding how hydrological and ecological systems will respond to climate change. In particular, high spatial and temporal resolution (meter scale, daily frequency) observations of snow-covered areas in mountain regions are critical as snow is important for water resources, driving the seasonal hydrological regimes of the Western U.S., with significant impacts on ecological communities. Planet Labs, Inc. (Planet) is a promising new source of commercial Cubesat high-resolution imagery that can be used in environmental science, as it has both high spatial (3.0-4.0 m) and temporal (1-2 day) resolution. This project will develop open-source, cloud-based cyberinfrastructure including an automated pipeline for processing, analyzing and interpreting Planet Cubesat image data using a machine learning approach to infer snow cover at meter-scale resolution. All models and data products will be openly available for use and modification by scientific communities. The project will support the training of students, postdocs and other early-career researchers through training events, special interest groups, and incubator programs. Currently, remotely-sensed snow observations with adequate temporal (daily) resolution are either captured at a spatial scale far too large to be relevant to high-resolution hydrology and ecology studies (e.g. MODIS, 500m) or are appropriate in spatial scale (1-10 m) but have inadequate temporal resolution and are cost-prohibitive (e.g. airborne LiDAR). The recent increase of commercial Earth Observation data with high spatiotemporal resolution may bridge the gap between ground-based and low-resolution satellite observation data. This project will focus on using convolutional neural networks-based models to couple ground and airborne-derived snow observations with Planet imagery in three different montane systems in Washington, California, and Colorado. These sites have very good coverage of ground and airborne snow observations at high resolution (3m) collected by the NASA Airborne Snow Observatory (ASO) and SnowEx missions, which will be used in the training and validation of the models. The project will develop advanced cyberinfrastructure using scalable virtual machines, distributed collaborative architecture, reusable computational frameworks, and replicable machine learning workflows to empower Earth scientists to access, process and generate high-resolution snow products from Cubesat data. The project will adopt open-source strategies and ensure that all data, algorithms, and architecture comply with FAIR data principles and reproducibility and will include training materials that promote the adoption of the infrastructure and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在相关的空间和时间尺度上从空间观察地球的能力是了解水文和生态系统如何应对气候变化的关键。特别是,高空间和时间分辨率(仪表尺度,每日频率)对山区覆盖区域的观察至关重要,因为雪对水资源很重要,推动了美国西部的季节性水文制度,对生态社区产生了重大影响。 Planet Labs,Inc。(Planet)是商业立方体高分辨率图像的新来源,可以在环境科学中使用,因为它具有高空间(3.0-4.0 m)和时间(1-2天)分辨率。该项目将开发开源的,基于云的网络基础结构,包括用于处理,分析和解释行星立方体图像数据的自动化管道,使用机器学习方法来推断仪表尺度分辨率的雪覆盖。所有模型和数据产品都将公开可供科学社区使用和修改。该项目将通过培训活动,特殊利益小组和孵化器计划来支持学生,博士后和其他早期研究人员的培训。目前,具有足够时间(每日)分辨率的远程降雪观测值要么以空间尺度捕获太大,因此与高分辨率的水文学和生态学研究(例如MODIS,500m)相关,或者在空间尺度上适当(1-) 10 m),但时间分辨率不足,并且成本良好(例如机载激光雷达)。近期使用高时空分辨率的商业地球观察数据的增加可能会弥合地面和低分辨率卫星观察数据之间的差距。该项目将着重于使用基于卷积神经网络的模型将地面和空中衍生的雪观察与行星图像在华盛顿,加利福尼亚州和科罗拉多州的三种不同的蒙塔尼系统中。这些地点在高分辨率(3M)的高分辨率(3M)上,由NASA空降雪观测站(ASO)和雪地任务收集,对地面和空降雪的观测值非常好,该雪地将用于模型的培训和验证。该项目将使用可扩展的虚拟机,分布式协作体系结构,可重复使用的计算框架以及可复制的机器学习工作流程开发高级网络基础设施,以使地球科学家从COUCESAT数据访问,处理和生成高分辨率的雪产品。该项目将采用开源策略,并确保所有数据,算法和体系结构都符合公平的数据原则和可重复性,并包括培训材料,以促进基础设施和工具的采用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛的影响审查标准来通过评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GeoFairy2: A Cross-Institution Mobile Gateway to Location-Linked Data for In-Situ Decision Making
  • DOI:
    10.3390/ijgi10010001
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziheng Sun;L. Di;Sreten Cvetojevic;Zhiqi Yu
  • 通讯作者:
    Ziheng Sun;L. Di;Sreten Cvetojevic;Zhiqi Yu
A review of Earth Artificial Intelligence
  • DOI:
    10.1016/j.cageo.2022.105034
  • 发表时间:
    2022-01-11
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Sun, Ziheng;Sandoval, Laura;John, Aji
  • 通讯作者:
    John, Aji
Using Geoweaver to Make Snow Mapping Workflow FAIR
使用 Geoweaver 使雪地绘图工作流程公平
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ziheng Sun其他文献

Agro-geoinformatics Data Sources and Sourcing
农业地理信息学数据源和采购
Using machine learning and trapezoidal model to derive All-weather ET from Remote sensing Images and Meteorological Data
利用机器学习和梯形模型从遥感图像和气象数据中导出全天候ET
EFD: A New Benchmark for Load Identification and Energy Disaggregation
EFD:负载识别和能量分解的新基准
Crop-CASMA - A Web GIS Tool for Cropland Soil Moisture Monitoring and Assessment Based on SMAP Data
Crop-CASMA - 基于 SMAP 数据的农田土壤湿度监测和评估的 Web GIS 工具
Extract flood duration from Dartmouth Flood Observatory flood product
从达特茅斯洪水观测站洪水产品中提取洪水持续时间
  • DOI:
    10.1109/agro-geoinformatics.2017.8047064
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Lin;L. Di;E. Yu;Junmei Tang;R. Shrestha;M. S. Rahman;L. Kang;Ziheng Sun;Chen Zhang;Lei Hu;Guangyuan Yang;Zhengwei Yang
  • 通讯作者:
    Zhengwei Yang

Ziheng Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

SPP1高表达M2巨噬细胞亚群通过诱导胃肠道间质瘤细胞PP2A泛素化降解促进伊马替尼耐药的机制研究
  • 批准号:
    82373335
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向胃肠道疾病准确筛查的内窥镜视频质量评价方法研究
  • 批准号:
    62371305
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
胃肠道间质瘤治疗的脂肪酸和类固醇膜受体的靶点发现、功能研究及靶向药物的发展
  • 批准号:
    82330118
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
基于光谱/质谱成像技术的纳米银胃肠道转化与亚器官空间分布研究
  • 批准号:
    22376211
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
RAF1调控c-Kit活化及其在胃肠道间质瘤中的作用和机制研究
  • 批准号:
    82373141
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

食物の硬さ及び食品GI値が思春期の発育・発達に及ぼす影響を検証する縦断研究
纵向研究验证食物硬度和食物GI值对青少年生长发育的影响
  • 批准号:
    23K10775
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
  • 批准号:
    10714021
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
IND-enabling development of Radioprotectin 1: a dual GI/HE radiation mitigator
Radioprotectin 1 的 IND 开发:双重 GI/HE 辐射缓解剂
  • 批准号:
    10794519
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
Text-messaging Communication Micro-Intervention for Couples Coping with Advanced GI Cancer
针对晚期胃肠道癌症夫妇的短信沟通微干预
  • 批准号:
    10607060
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
Does microbiome composition moderate GI and CNS function in a VPA-induced mouse model of autism?
在 VPA 诱导的自闭症小鼠模型中,微生物组组成是否会调节胃肠道和中枢神经系统功能?
  • 批准号:
    10753699
  • 财政年份:
    2023
  • 资助金额:
    $ 4.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了