Nitrite Oxidation in Oxygen Minimum Zones

最低氧区中的亚硝酸盐氧化

基本信息

  • 批准号:
    1946516
  • 负责人:
  • 金额:
    $ 75.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

This research is grounded in the fundamental role of nitrogen in limiting production in the ocean. Nitrite is a pivotal compound in the nitrogen cycle: it can be oxidized to nitrate, and thus retained as an available nutrient, or it can be reduced to dinitrogen gas, and thus lost from the bioavailable nitrogen pool. Oxidation of nitrite by nitrite oxidizing bacteria (NOB) is the only biological pathway by which nitrate is produced, and all known NOB require oxygen for life. The reduction pathway is also carried out by microbes, in this case, bacteria that thrive only in the absence of oxygen. In previous experiments, however, both oxidation and reduction of nitrite were detected in the same samples from ocean waters in the absence of oxygen. We will investigate three explanations for the apparent oxidation of nitrite in the absence of oxygen on a research cruise to the low oxygen waters off the coast of Peru: 1) The presence of unknown kinds of NOB that do not require oxygen; 2) a new reaction called dismutation, which is possible but never detected in nature; 3) an artifact associated with oxygen stress in NOB. This research could lead to discovery of novel mechanisms and or novel organisms that determine the fate of nitrite and the availability of nitrogen to support primary production in the long run. This project will advance discovery and understanding while promoting teaching, training and learning by providing opportunities for Princeton students to get involved in and have hands on experience in research in the lab and potentially at sea. Both undergraduate and graduate students will participate in the research through internships and field experiences. We will also integrate our work at sea into teaching in the classroom via videos and assignments based on data collected during the cruise.Nitrite oxidation is the only known biological process that produces nitrate, which comprises the largest fixed nitrogen reservoir in the ocean. Nitrite oxidation is carried out by nitrite oxidizing bacteria (NOB), and all known species are obligate aerobes. Nitrite reduction to N2 occurs in multiple microbial pathways, generally under anoxic conditions. Despite their apparent incompatibility regarding oxygen, both processes are detected in the low oxygen or anoxic waters of oxygen minimum zones (OMZs). Thus, the fate of nitrite in OMZs has implications for the global fixed N budget. Nitrite oxidation is detected at high rates in essentially zero oxygen water in the most oxygen depleted depth intervals in OMZ regions, which suggests that some nitrite oxidizers might possess anaerobic metabolic capabilities. Nitrite disproportionation (or dismutation), in which nitrite is simultaneously oxidized to nitrate and reduced to N2, is a thermodynamically favorable reaction, which would link the two processes in one organism – but it has never been observed in nature. The research proposed here will address two big questions about nitrite in the ocean: 1) How does anaerobic nitrite oxidation work? 2) What determines the fate of nitrite? The experimental approach will investigate three possible explanations for anaerobic nitrite oxidation: 1) Nitrite is oxidized to nitrate by different clades of NOB, which exhibit different tolerances/requirements for oxygen; 2) Nitrite dismutation, also performed by NOB, partially explains the cooccurrence of oxidation and reduction of nitrite; 3) Apparently anaerobic nitrite oxidation is indeed biologically mediated but does not always represent net production of nitrate from nitrite; rather it results from isotopic equilibration during enzyme-catalyzed interconversion of nitrite and nitrate. These questions will be addressed by performing a suite of 15N-tracer incubations at stations located within and outside of one of the major OMZs in the ocean, the Eastern Tropical South Pacific. The dependence of the rate processes on oxygen concentrations will be determined, and the composition of the microbial assemblages will be assessed in order to determine whether different microbial components are involved under different environmental conditions. The expression of genes involved in oxidation/reduction/ respiratory metabolisms at low oxygen concentrations will be measured across oxygen gradients and in oxygen manipulations to identify their potential role in supporting “anaerobic” nitrite oxidation. The possibility that the apparently anaerobic nitrite oxidation is due to an enzyme level interconversion between nitrite and nitrate, which does not lead to net nitrate production and is not linked to growth of nitrite oxidizing bacteria, will also be investigated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究的基础是氮在限制海洋生产中的基本作用。亚硝酸盐是氮循环中的关键化合物:它可以被氧化为硝酸盐,从而保留为可用的营养物,也可以被还原为氮气。 ,因此从生物可利用的氮库中损失 亚硝酸盐氧化细菌 (NOB) 氧化亚硝酸盐是产生硝酸盐的唯一生物途径,并且所有已知的 NOB 都需要氧气。还原途径也是由微生物进行的,在这种情况下,细菌只能在缺氧的情况下生长,然而,在之前的实验中,在缺氧的情况下,在来自海水的相同样品中检测到了亚硝酸盐的氧化和还原。我们将在前往秘鲁海岸的低氧水域进行考察航行时,调查亚硝酸盐明显氧化的三种解释:1) 存在不需要氧气的未知种类的 NOB; ) 一个称为歧化的新反应,这是可能的,但在自然界中从未检测到;3)与 NOB 中的氧应激相关的人工产物,这项研究可能会发现决定亚硝酸盐的命运和氮的可用性的新机制和/或新生物。从长远来看,该项目将通过为普林斯顿大学的学生提供参与实验室和潜在的海上研究并获得实践经验的机会,促进发现和理解,同时促进教学、培训和学习。研究生将通过实习和参与研究我们还将根据航行期间收集的数据,通过视频和作业将我们的海上工作融入到课堂教学中。亚硝酸盐氧化是唯一已知的产生硝酸盐的生物过程,硝酸盐是海洋中最大的固定氮库。亚硝酸盐氧化是由亚硝酸盐氧化细菌 (NOB) 进行的,所有已知物种都是专性需氧微生物,亚硝酸盐还原为 N2 的过程发生在多种微生物途径中,通常是在缺氧条件下。尽管它们在氧气方面明显不相容,但这两个过程都是在最低氧区 (OMZ) 的低氧或缺氧水中检测到的,因此,OMZ 中亚硝酸盐的命运对高速率检测到的全球固定氮预算有影响。在 OMZ 区域最缺氧的深度区间内,水中的含氧量基本上为零,这表明某些亚硝酸盐氧化剂可能具有厌氧代谢能力(或亚硝酸盐歧化作用)。歧化),其中亚硝酸盐同时氧化为硝酸盐并还原为氮气,是一种热力学上有利的反应,它将在一个生物体中将这两个过程联系起来——但它从未在自然界中被观察到。这里提出的研究将解决两个大问题。关于海洋中的亚硝酸盐:1)厌氧亚硝酸盐氧化如何进行?2)什么决定了亚硝酸盐的命运?实验方法将研究厌氧的三种可能的解释。亚硝酸盐氧化:1)亚硝酸盐被不同的NOB进化枝氧化成硝酸盐,这些进化枝对氧表现出不同的耐受性/要求;2)亚硝酸盐歧化,也由NOB进行,部分解释了亚硝酸盐的氧化和还原的同时发生;亚硝酸盐氧化确实是生物介导的,但并不总是代表亚硝酸盐净产生硝酸盐;相反,它是亚硝酸盐和硝酸盐酶催化相互转化过程中同位素平衡的结果。这些问题将通过在东部热带南部海洋主要 OMZ 内外的站点进行一系列 15N 示踪剂孵育来解决。将确定速率过程对氧浓度的依赖性,并评估微生物组合的组成,以确定是否涉及不同的微生物成分。在不同的环境条件下,将在氧梯度和氧操作中测量参与低氧浓度下的氧化/还原/呼吸代谢的基因的表达,以确定它们在支持“厌氧”亚硝酸盐氧化中的潜在作用。亚硝酸盐氧化是由于亚硝酸盐和硝酸盐之间的酶水平相互转化造成的,这不会导致净硝酸盐产生,并且与亚硝酸盐氧化的增长无关该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Database of nitrification and nitrifiers in the global ocean
  • DOI:
    10.5194/essd-15-5039-2023
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Weiyi Tang;B. Ward;Michael Beman;Laura Bristow;Darren Clark;Sarah Fawcett;C. Frey;François Fripiat;G. Herndl;Mhlangabezi Mdutyana;F. Paulot;Xuefeng Peng;A. Santoro;T. Shiozaki;E. Sintes;Charles Stock;Xin Sun;X. Wan;Min N. Xu;Yao Zhang
  • 通讯作者:
    Weiyi Tang;B. Ward;Michael Beman;Laura Bristow;Darren Clark;Sarah Fawcett;C. Frey;François Fripiat;G. Herndl;Mhlangabezi Mdutyana;F. Paulot;Xuefeng Peng;A. Santoro;T. Shiozaki;E. Sintes;Charles Stock;Xin Sun;X. Wan;Min N. Xu;Yao Zhang
Nitrite Oxidation Across the Full Oxygen Spectrum in the Ocean
  • DOI:
    10.1029/2022gb007548
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Xin Sun;C. Frey;B. Ward
  • 通讯作者:
    Xin Sun;C. Frey;B. Ward
Controls on nitrite oxidation in the upper Southern Ocean: insights from winter kinetics experiments in the Indian sector
  • DOI:
    10.5194/bg-19-3425-2022
  • 发表时间:
    2022-07-20
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Mdutyana, Mhlangabezi;Marshall, Tanya;Fawcett, Sarah E.
  • 通讯作者:
    Fawcett, Sarah E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bess Ward其他文献

Bess Ward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bess Ward', 18)}}的其他基金

Nitrous Oxide Consumption in Surface Waters
地表水中一氧化二氮的消耗量
  • 批准号:
    2342493
  • 财政年份:
    2024
  • 资助金额:
    $ 75.25万
  • 项目类别:
    Standard Grant
Marine Diatom-Parasite Relationships in Upwelling Systems
上升流系统中的海洋硅藻与寄生虫的关系
  • 批准号:
    2149606
  • 财政年份:
    2022
  • 资助金额:
    $ 75.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Biogeochemical Processes in a Subsurface Hypersaline Environment near the Abiotic Fringe
合作研究:非生物边缘附近地下高盐环境中的生物地球化学过程
  • 批准号:
    2026853
  • 财政年份:
    2020
  • 资助金额:
    $ 75.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanisms and Controls of Nitrous Oxide Production in the Eastern Tropical North Pacific Ocean
合作研究:热带北太平洋东部一氧化二氮产生的机制和控制
  • 批准号:
    1657663
  • 财政年份:
    2017
  • 资助金额:
    $ 75.25万
  • 项目类别:
    Standard Grant
EAGER: Novel genome-based method to measure taxon-specific phytoplankton growth rates in natural communities
EAGER:基于基因组的新方法来测量自然群落中特定分类单元的浮游植物生长率
  • 批准号:
    1747511
  • 财政年份:
    2017
  • 资助金额:
    $ 75.25万
  • 项目类别:
    Standard Grant
Dimensions: Collaborative Research: Functional Diversity of Marine Eukaryotic Phytoplankton and Their Contributions to the C and N Cycling
维度:合作研究:海洋真核浮游植物的功能多样性及其对碳氮循环的贡献
  • 批准号:
    1136345
  • 财政年份:
    2012
  • 资助金额:
    $ 75.25万
  • 项目类别:
    Standard Grant
Environmental control of microbial N20 fluxes and DIN loss in salt marsh sediments
盐沼沉积物中微生物 N20 通量和 DIN 损失的环境控制
  • 批准号:
    1019624
  • 财政年份:
    2010
  • 资助金额:
    $ 75.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Control of Denitrification and Anammox in the Oxygen Deficient Waters of the Eastern Tropical North and South Pacific
合作研究:东部热带北太平洋和南太平洋缺氧水域反硝化和厌氧氨氧化的控制
  • 批准号:
    1029951
  • 财政年份:
    2010
  • 资助金额:
    $ 75.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Anammox and Denitrification in the Oxygen Deficient Zone of the Arabian Sea
合作研究:阿拉伯海缺氧区的厌氧氨氧化和反硝化
  • 批准号:
    0648026
  • 财政年份:
    2007
  • 资助金额:
    $ 75.25万
  • 项目类别:
    Standard Grant
En-Gen: Genome-Enabled Environmental Functional Genomics and Expression Profiling of Diatoms in the Ocean
En-Gen:海洋硅藻的基因组环境功能基因组学和表达谱分析
  • 批准号:
    0722374
  • 财政年份:
    2007
  • 资助金额:
    $ 75.25万
  • 项目类别:
    Standard Grant

相似国自然基金

纳米磁铁矿对亚硝酸盐型甲烷厌氧氧化菌群的深度富集及其脱氮强化机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
亚硝酸盐胁迫下厌氧氨氧化的响应特性及生态适应机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
不同施肥措施对稻田土壤亚硝酸盐和硝酸盐型甲烷厌氧氧化过程的影响研究
  • 批准号:
    41977037
  • 批准年份:
    2019
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
亚硝酸盐型和硫酸盐型厌氧氨氧化耦合协同实现晚期垃圾渗滤液深度脱氮除硫
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
反硝化过程中亚硝酸盐再氧化的氮和氧同位素分馏效应对硝酸盐同位素组成的影响研究
  • 批准号:
    41973017
  • 批准年份:
    2019
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目

相似海外基金

Novel Oxygen Carriers Based on Hexacoordinate Globins to Prevent Renal Toxicity
基于六配位球蛋白的新型氧载体可预防肾毒性
  • 批准号:
    9257662
  • 财政年份:
    2017
  • 资助金额:
    $ 75.25万
  • 项目类别:
An Approach toward Antidotes for Phosphine
磷化氢解毒剂的研究方法
  • 批准号:
    9418908
  • 财政年份:
    2017
  • 资助金额:
    $ 75.25万
  • 项目类别:
Xanthine oxidoreductase in impaired diabetic wound healing.
黄嘌呤氧化还原酶在糖尿病伤口愈合受损中的作用。
  • 批准号:
    10477928
  • 财政年份:
    2016
  • 资助金额:
    $ 75.25万
  • 项目类别:
Xanthine oxidoreductase in impaired diabetic wound healing.
黄嘌呤氧化还原酶在糖尿病伤口愈合受损中的作用。
  • 批准号:
    9138069
  • 财政年份:
    2016
  • 资助金额:
    $ 75.25万
  • 项目类别:
Xanthine oxidoreductase in impaired diabetic wound healing.
黄嘌呤氧化还原酶在糖尿病伤口愈合受损中的作用。
  • 批准号:
    10038744
  • 财政年份:
    2016
  • 资助金额:
    $ 75.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了