Collaborative Proposal: Redefining the ecological memory of disturbance over multiple temporal and spatial scales in forest ecosystems
合作提案:重新定义森林生态系统多个时空尺度扰动的生态记忆
基本信息
- 批准号:1946007
- 负责人:
- 金额:$ 19.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Most research on forests occurs within a single forest or only over a few years or, less often, a few decades. It is typically believed that local disturbances affect trees only in that forest. However, recent evidence suggests that disturbances affected forests over hundreds of miles and more by the same series of drought events and a hard spring frost that occurred 250 years ago. These extreme weather events made it possible for many ancient trees within this region to grow from small saplings into the canopy trees they are now. These large-scale but very short-lived events like drought and frost are predicted to occur more often and become worse in the future. If that happens, regional forest declines could become more important in the future. To see if this is a real possibility, this award will yield new data from old forests throughout the Northeastern U.S. to investigate how trees and forests respond to extreme events similar to those from 250 years ago. The broader impacts will focus on recruiting people who are not well represented in scientific and academic institutions. Students and project participants will be trained on how to conduct science with humility, have respect for all people, and to combat institutional racism and gender bias. The team will be active on social media and make presentations at scientific meetings, public lectures, and educational events to share what is learned through our study.The ecological memory of forested ecosystems to extreme climatic events is not adequately captured by theories of disturbance and vegetation models; the common scale of ecological research is spatially too small and temporally too short to capture long-term ecosystem development. This award will investigate multiple data streams with two dynamic vegetation models and Bayes hierarchical modelling to answer several questions, including: 1) How do extreme climatic events impact ecosystem development and ecological processes? and 2) What are the long-term interactions between local, high-frequency disturbance (windstorms, gap dynamics, etc.) and large-scale, low-frequency disturbance (severe drought)? Through these questions, the research will rigorously test theory by confronting models with realistic disturbance scenarios from 600 years of tree-growth data covering 400,000 km2 of the northeastern US to determine to what extent extreme climatic events synchronize disturbance across spatial scales and their potential long-term legacies. The award outcomes will be useful in forecasting climate-forest interactions, as extreme events are expected to increase in the future. By scaling from seasons to centuries, this project bridges short- and long-term studies to provide information at the scales necessary to guide land use decisions in complex systems under a changing climate. In addition to training, the project will conduct a modelling workshop to push the margins of forest science by inviting experts and people from a range of disciplines and underrepresented groups to produce a conceptual paper at the intersection of data-model assimilation, Bayesian statistics, and spatial and temporal analyses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大多数森林研究都发生在单个森林内,或者只持续几年,或者少数情况下持续几十年。人们通常认为局部干扰仅影响该森林中的树木。然而,最近的证据表明,250 年前发生的一系列干旱事件和春季严霜对数百英里甚至更远的森林造成了干扰。这些极端天气事件使该地区的许多古树有可能从小树苗长成现在的树冠树木。这些大规模但非常短暂的事件,如干旱和霜冻,预计未来会更频繁地发生,而且会变得更糟。如果发生这种情况,区域森林减少在未来可能会变得更加重要。为了看看这是否真的有可能,该奖项将从美国东北部的老森林中获取新数据,以调查树木和森林如何应对类似于 250 年前的极端事件。更广泛的影响将集中在招募那些在科学和学术机构中代表性不足的人才。学生和项目参与者将接受培训,了解如何谦虚地进行科学研究、尊重所有人以及对抗制度性种族主义和性别偏见。该团队将活跃在社交媒体上,并在科学会议、公开讲座和教育活动中发表演讲,分享我们的研究成果。干扰和植被理论并未充分捕捉森林生态系统对极端气候事件的生态记忆模型;生态研究的共同规模在空间上太小,在时间上太短,无法捕捉长期的生态系统发展。该奖项将通过两个动态植被模型和贝叶斯分层模型研究多个数据流,以回答以下几个问题:1)极端气候事件如何影响生态系统发展和生态过程? 2)局部高频扰动(风暴、间隙动态等)与大规模低频扰动(严重干旱)之间的长期相互作用是什么?通过这些问题,该研究将通过将模型与来自覆盖美国东北部 400,000 平方公里的 600 年树木生长数据的现实扰动场景进行对比,来严格检验理论,以确定极端气候事件在多大程度上同步跨空间尺度的扰动及其潜在的长期影响。术语遗产。该奖项的结果将有助于预测气候与森林的相互作用,因为预计未来极端事件将会增加。通过从季节到几个世纪的扩展,该项目将短期和长期研究联系起来,提供必要规模的信息,以指导气候变化下复杂系统的土地利用决策。除了培训之外,该项目还将举办一个建模研讨会,邀请来自各个学科和代表性不足群体的专家和人员在数据模型同化、贝叶斯统计和森林科学的交叉点上撰写概念论文,以推动森林科学的发展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Finley其他文献
Small Area Estimates for National Applications: A Database to Dashboard Strategy Using FIESTA
国家应用的小面积估算:使用 FIESTA 的数据库到仪表板策略
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.2
- 作者:
Andrew Finley;T. Frescino;K. McConville;Grayson W. White;J. C. Toney;G. Moisen - 通讯作者:
G. Moisen
Andrew Finley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Finley', 18)}}的其他基金
Collaborative Research: High-Dimensional Spatial-Temporal Modeling and Inference for Large Multi-Source Environmental Monitoring Systems
合作研究:大型多源环境监测系统的高维时空建模与推理
- 批准号:
1916395 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
Collaborative Research: Hierarchical Sparsity-Inducing Gaussian Process Models for Bayesian Inference on Large Spatiotemporal Datasets
合作研究:大型时空数据集贝叶斯推理的层次稀疏诱导高斯过程模型
- 批准号:
1513481 - 财政年份:2015
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
CAREER: Advancements in Spatio-temporal Modeling and Education in Support of NEON and Large-scale and Long-term Ecological Research
职业:支持 NEON 和大规模长期生态研究的时空建模和教育进展
- 批准号:
1253225 - 财政年份:2013
- 资助金额:
$ 19.58万 - 项目类别:
Continuing Grant
Collaborative Research: Climate Change Impacts on Forest Biodiversity: Individual Risk to Subcontinental Impacts
合作研究:气候变化对森林生物多样性的影响:次大陆影响的个体风险
- 批准号:
1137309 - 财政年份:2012
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
相似国自然基金
指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
- 批准号:32371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济博弈中提议者对先前第三方干预者的分配公平性研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于深度层次特征相似性度量的视觉跟踪方法研究
- 批准号:61773397
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
构造类型专家系统及其开发工具的研究
- 批准号:68875006
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Proposal: Redefining the ecological memory of disturbance over multiple temporal and spatial scales in forest ecosystems
合作提案:重新定义森林生态系统多个时空尺度扰动的生态记忆
- 批准号:
2231681 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
- 批准号:
2220601 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
- 批准号:
2220657 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
Collaborative Proposal: Redefining the ecological memory of disturbance over multiple temporal and spatial scales in forest ecosystems
合作提案:重新定义森林生态系统多个时空尺度扰动的生态记忆
- 批准号:
1945910 - 财政年份:2021
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
Collaborative Proposal: Redefining the ecological memory of disturbance over multiple temporal and spatial scales in forest ecosystems
合作提案:重新定义森林生态系统多个时空尺度扰动的生态记忆
- 批准号:
1945921 - 财政年份:2021
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant