Collaborative Research: Understanding the physics of flocculation processes and cohesive sediment transport in bottom boundary layers through multi-scale modeling
合作研究:通过多尺度建模了解底部边界层絮凝过程和粘性沉积物输送的物理原理
基本信息
- 批准号:1924655
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Due to climate change, sea level rise and anthropogenic development, coastal communities have been facing increasing threats from flooding, land loss, water quality, and other ecosystem challenges such as harmful algal blooms. Most of these pressing problems are directly or indirectly associated with sediment transport, some related to sands, but many are due to fine-grained sediments. Fine-grained sediments are cohesive and hence they transport as porous aggregates of particles, called flocs. Through their complex structures, flocs are vehicles of organic carbon, nutrients, contaminants and sometimes they can contain sand grains. Consequently, their settling velocities are very difficult to quantify. To date, most coastal/estuarine models neglect the flocculation process and adopt a constant settling velocity to estimate deposition of fine-grained sediments, which poses a considerable limitation of their predictive capability for the various challenges addressed above. In order to understand the fundamental dynamics of flocculation and their impact on fine-grained sediment resuspension and deposition, several integrated numerical simulations and optical-based laboratory observations across different scales will be carried out, including those associated with the particle size, water turbulence motions, and bottom boundary layer. Outcomes from the proposed research will be used to better equip coastal models with sediment transport capability to tackle challenges facing the coastal communities. The research findings will be widely disseminated to the coastal modeling community through participation in conferences and collaboration with the Community Surface Dynamics Modeling System (CSDMS). The open-source code to be developed and the data from the laboratory experiments will be disseminated through CSDMS and the flocculation formulation codes to be developed will be integrated into the CSDMS modeling framework via the recently released Python Modeling Toolkit (PyMT). In addition, a clinic on flocculation modeling is planned for the CSDMS annual meeting. This project supports 2 PhD students who will receive balanced training in coastal processes, fluid dynamics, high performance computing and laboratory techniques. The project also provides partial support for an early career postdoc researcher. Two undergraduate students will benefit from this project for their research on cohesive sediments. The project also strengthens collaboration with the United Kingdom and Germany on novel observational and computational tools.The primary goal of this collaborative study is to address key challenges of cohesive sediment transport in coastal/estuarine bottom boundary layers. The study utilizes a novel particle-resolved simulation model to investigate the physics of flocculation and floc structures for heterogeneous sediments. This effort is further augmented by laboratory experiments designed to better quantify stickiness and understand flocculation of sand-mud mixtures. Using a turbulence-resolving simulation model for fine sediment transport in a wave-current bottom boundary layer, coupled with enhanced flocculation formulations to model settling velocity, the investigators will study the interplay between flocculation, resuspension and deposition of cohesive sediments in coastal/estuarine bottom boundary layers. Five hypotheses are developed to guide the experimental and modeling work which will provide insight into key small-scale processes that are difficult to resolved in coastal models. Finally, by integrating and synthesizing these research outcomes, the study will evaluate a suite of closures for the settling velocity due to flocculation, from complex to simple, to inform coastal/estuarine modeling of cohesive sediment transport at regional scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于气候变化、海平面上升和人为开发,沿海社区面临着越来越多的洪水、土地流失、水质和其他生态系统挑战(如有害藻华)的威胁。这些紧迫问题大多数都直接或间接与沉积物输送有关,其中一些与沙子有关,但许多是由于细粒沉积物造成的。细粒沉积物具有粘性,因此它们以多孔颗粒聚集体(称为絮凝体)的形式运输。由于其复杂的结构,絮凝物是有机碳、营养物、污染物的载体,有时还含有沙粒。因此,它们的沉降速度很难量化。迄今为止,大多数沿海/河口模型忽略了絮凝过程,并采用恒定的沉降速度来估计细粒沉积物的沉积,这对其对上述各种挑战的预测能力造成了相当大的限制。为了了解絮凝的基本动力学及其对细粒沉积物再悬浮和沉积的影响,将进行多个不同尺度的综合数值模拟和基于光学的实验室观察,包括与颗粒尺寸、水湍流运动相关的观察,和底部边界层。拟议研究的成果将用于更好地为沿海模型配备沉积物运输能力,以应对沿海社区面临的挑战。研究结果将通过参加会议以及与社区表面动力学建模系统(CSDMS)的合作,广泛传播到沿海建模界。待开发的开源代码和实验室实验数据将通过 CSDMS 传播,待开发的絮凝配方代码将通过最近发布的 Python 建模工具包 (PyMT) 集成到 CSDMS 建模框架中。此外,还计划在 CSDMS 年会上举办絮凝建模研讨会。该项目支持 2 名博士生,他们将接受沿海过程、流体动力学、高性能计算和实验室技术方面的均衡培训。该项目还为早期职业博士后研究员提供部分支持。两名本科生将受益于这个项目,因为他们对粘性沉积物的研究。该项目还加强了与英国和德国在新型观测和计算工具方面的合作。这项合作研究的主要目标是解决沿海/河口底部边界层粘性沉积物输送的关键挑战。该研究利用一种新颖的粒子解析模拟模型来研究异质沉积物的絮凝和絮凝结构的物理原理。旨在更好地量化粘性并了解砂泥混合物的絮凝作用的实验室实验进一步增强了这一努力。研究人员将利用波流底部边界层中细粒沉积物输送的湍流解析模拟模型,结合增强的絮凝公式来模拟沉降速度,研究沿海/河口底部粘性沉积物的絮凝、再悬浮和沉积之间的相互作用边界层。提出了五种假设来指导实验和建模工作,这将有助于深入了解沿海模型中难以解决的关键小规模过程。最后,通过整合和综合这些研究成果,该研究将评估一系列由絮凝引起的沉降速度的闭合,从复杂到简单,为区域尺度的粘性沉积物输送的沿海/河口模型提供信息。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eckart Meiburg其他文献
Eckart Meiburg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eckart Meiburg', 18)}}的其他基金
Collaborative Research: Advancing turbidity currents: moving sources, polydispersity and aggregation
合作研究:推进浊流:移动源、多分散性和聚集
- 批准号:
2138583 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Two-way Coupled Fluid/Particulate Transport in Fractured Media - Bridging the Scales from Microscopic Origins to Macroscopic Networks
合作研究:断裂介质中的双向耦合流体/颗粒传输 - 连接从微观起源到宏观网络的尺度
- 批准号:
2100691 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-BSF: Multiphase transport processes with phase change in stratified hypersaline lakes: A combined computational and field investigation
NSF-BSF:分层超盐湖中具有相变的多相传输过程:计算和现场调查相结合
- 批准号:
1936258 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Cohesive Sediment Dynamics in Turbulent Flow
湍流中的粘性沉积物动力学
- 批准号:
1803380 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Travel Support for U.S. Participants Attending the 8th International Symposium on Stratified Flows (San Diego, August 29 - September 1, 2016)
为参加第八届分层流国际研讨会(圣地亚哥,2016 年 8 月 29 日至 9 月 1 日)的美国与会者提供差旅支持
- 批准号:
1630244 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
UNS:Collaborative Research: Multiscale interactions between active particles and stratified fluids during collective vertical migration
UNS:合作研究:集体垂直迁移过程中活性颗粒与分层流体之间的多尺度相互作用
- 批准号:
1510615 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Travel Support for U.S. Participants Attending the IUTAM Symposium on Multiphase Flows with Phase Change: Challenges and Opportunities, December 8 - 11, 2014, Hyderabad, India
为参加 IUTAM 相变多相流研讨会的美国参与者提供差旅支持:挑战与机遇,2014 年 12 月 8 日至 11 日,印度海得拉巴
- 批准号:
1417294 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Double-diffusive sedimentation
合作研究:双扩散沉降
- 批准号:
1438052 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Gravity Currents and Related Phenomena: A Circulation-Based Modeling Framework
重力流和相关现象:基于环流的建模框架
- 批准号:
1335148 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Gravity and Turbidity Currents Interacting with Interfaces of Free Surfaces
重力和浊流与自由表面界面相互作用
- 批准号:
1067847 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
面向开放场景的多模态视频表征与理解研究
- 批准号:62376069
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度理解的大规模互联网虚假新闻检测研究
- 批准号:62302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向真实场景的基于人体关节点的行为理解研究
- 批准号:62302093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态数学问题理解和类人解答方法研究
- 批准号:62376012
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于脉冲神经元内在可塑性建模的类脑智能交互意图理解研究
- 批准号:62376261
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318851 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349883 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant