CAREER: Quantum Hydrodynamics: From Electron Fluids To Chiral Active Matter

职业:量子流体动力学:从电子流体到手性活性物质

基本信息

  • 批准号:
    1944967
  • 负责人:
  • 金额:
    $ 51.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis career award supports research and education on the collective properties quantum mechanical fluids and active matter systems. The study of quantum mechanical phenomena on the mesoscopic scale, intermediate between the macroscope and the scales of atoms, holds promise to advance understanding of how the unusual quantum world connects with the familiar macroscopic world and may lead to new electronic device technologies. Robust quantum effects can manifest at sufficiently low temperatures where essentially the whole system can behave like a single quantum mechanical entity that can exhibit unusual and counterintuitive properties. Superconductivity is one example of such a quantum state of matter. The electrons in superconducting states behave like fluids that can flow without viscosity and so, without dissipation, a phenomenon not displayed by the classical fluids of everyday experience. Theoretical understanding of quantum fluids is built on hydrodynamics, which is the theory of classical fluid motion under external forces. The PI and his research team will focus on developing theoretical descriptions of such states as modifications of the classical hydrodynamics in a conceptually transparent way that captures the unique properties of the macroscopic quantum state. The PI’s effort in this direction will build toward generalizing the approach for other quantum liquids, including those that arise in electrons that are trapped between two semiconductor layers and exposed to a perpendicular magnetic field, quantum Hall fluids. Success of this long-term objective will hopefully uncover hitherto untapped mesoscale phenomena that can be harnessed to develop the technology of a new generation of quantum devices. Inspired by the appearance of dissipation-free phenomena analogous to quantum fluids, the PI will investigate fluids made of self-propelled particles that can autonomously change direction as they move. These chiral active matter systems obey the laws of classical mechanics but are far from the tranquil state of equilibrium. The PI aims to investigate the extent to which they may be able to serve as simulators of quantum fluids. An important component of this project is to disseminate the research effort via three channels of education and training (a) a special topics course on fluid dynamics applied to condensed matter systems aimed at graduate students and senior undergraduates, (b) Research opportunities for undergraduates and high school students, and (c) Interactive demonstrations based lectures for high school students on basic fluid dynamics principles that underpin the research effort. This component will seek to remedy the resource scarcity for setting up demonstrations in many of the schools under the ambit of the College-Now program run at City College of New York.TECHNICAL SUMMARYThis career award supports research and education on the collective properties of mesoscopic quantum systems and chiral active matter systems. Understanding the transport properties of ground-state quantum fluids such as superconductors and Quantum Hall (QH) fluids is not only important for fundamental physics but also central to the development of the next generation of low dissipation electronic devices. In this project, the PI and his research team will investigate the quantum modifications to classical hydrodynamics that arise beyond the ideal fluid regime due to dominant non-linear and higher gradient viscous effects. The non-linear nature of the theory facilitates the study of the strong interaction effects of quantum many-body systems. The PI will focus on three interrelated objectives that share a common quantum hydrodynamic framework: (I) Study the phenomenology of QH hydrodynamics that includes higher gradient effects such as odd/Hall viscosity: Developing a hydrodynamical theory of QH fluids that includes higher gradient odd viscous effects will bring new insight into the fluid nature of QH state in the form of non-linear effects and free surface dynamics which has so far remained outside analysis based on topological field theories. (II) Incorporate non-linear fluid dynamical effects in the transport properties in viscous electron fluids: The proposed research in viscous electron fluids will enable the study of non-linear effects, such as solitons, in mesoscopic transport. This research direction is timely due to the recent experimental advances in mesoscopic quantum systems such as Gallium Arsenide and Graphene, which are host to viscous electron fluids. (III) Determine the mechanical properties and hydrodynamic instabilities of non-equilibrium chiral active fluids: Chiral active fluids despite being non-equilibrium classical systems, share many properties with QH fluids and viscous electron fluids and can serve as analog simulators. Understanding the mechanical response and instabilities of chiral active matter will not only help design active matter experiments that can be used to understand quantum fluids but can also lead to the design of new synthetic active materials with remarkable properties. The PI’s long-term effort to develop the semiclassical theory of QH fluids will hopefully bring new understanding in the development of the semiclassical theory of general quantum fluids, which has been a long open problem.The educational objectives of this project will be achieved via three main vehicles: 1) A topical course on fluid dynamics applicable to condensed matter systems for graduate and senior undergraduate students that will be offered at the City College of New York. 2) Research opportunities in the field of theoretical fluid dynamics applied to condensed matter systems for City College of New York undergraduate students and High School for Math Science and Engineering high school students. 3) Interactive and demonstration-based talks on fluid dynamics for New York City high school students in collaboration with the College-Now program, which serves students from inner-city schools and underrepresented groups to facilitate a smooth transition from school to the first years of college.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一职业奖支持有关集体物业量子机械流体和活动物质系统的研究和教育。介质量表上量子机械现象的研究中间是宏观镜和原子尺度之间的研究,有望提高人们对异常量子世界如何与熟悉的宏观宏观世界联系的理解,并可能导致新的电子设备技术。强大的量子效应可以在足够低的温度下表现出来,在足够低的温度下,整个系统的行为可能像单个量子机械实体一样,可能存在异常和违反直觉。超导性是这种量子状态的一个例子。超导状态中的电子的行为就像可以在没有粘度的情况下流动的流体,因此,在没有耗散的情况下,每天经验的经典流体不会显示出一种现象。对量子流体的理论理解是建立在流体动力学上的,这是外部力量下经典流体运动的理论。 PI和他的研究团队将专注于以概念透明的方式来开发对经典水动力学修改等状态的理论描述,从而捕获宏观量子状态的独特性能。 PI在这个方向上的努力将旨在推广其他量子液体的方法,包括在两个半导体层之间被困在电子设备中的方法,并暴露于垂直磁场,量子厅液体。这个长期目标的成功有望可以揭示隐藏的未开发的中尺度现象,这些现象可以利用,以开发新一代量子设备的技术。受到与量子流体相似的无耗散现象的出现的启发,PI将研究由自螺旋体颗粒制成的流体,这些颗粒可以随着移动而自主改变方向。这些手性活跃物质系统遵守经典力学定律,但远离平衡状态。 PI旨在研究它们可能能够用作量子流体的模拟器的程度。该项目的一个重要组成部分是通过三个教育和培训渠道传播研究工作(a)针对研究生和高级本科生的凝结物质系统的特殊主题课程,(b)本科生和高中生的研究机会,以及(c)基于互动式的互动演示的高中生的互动式培训,以对基本的流动性动力学进行基础的研究,以下一项研究,该研究的努力是一项研究,该研究努力是一项研究。该组成部分将试图记住在纽约市城市学院开展的许多学校中建立示威活动的资源稀缺性。了解地面量子流体(例如超导体和量子霍尔(QH)流体)的转运性能不仅对基本物理学很重要,而且对于下一代低消散电子设备的发展也很重要。在这个项目中,PI和他的研究团队将研究由于主要的非线性和较高梯度粘性效应而导致的经典流体动力学的量子修饰。该理论的非线性性质促进了量子多体系统的强相互作用效应的研究。 The PI will focus on three interrelated objects that share a common quantum hydrodynamic framework: (I) Study the phenomenology of QH hydrodynamics that includes higher gradient effects such as odd/Hall viscosity: Developing a hydrodynamical theory of QH fluids that includes higher gradient odd viscous effects will bring new insight into the fluid nature of QH state in the form of non-linear effects and free surface dynamics which has so far remained outside analysis based on拓扑字段理论。 (ii)在粘性电子流体的转运性质中纳入了非线性流体动力学效应:粘性电子流体的拟议研究将使介质转运中的非线性效应(例如固体)进行研究。该研究方向及时归功于介质量子系统(例如砷化烷酰和石墨烯)的最新实验进展,这些系统宿主是粘性电子流体的宿主。 (iii)确定非平衡性手性活性流体的机械性能和流体动力不稳定性:手性活性流体,尽管是非平衡的经典系统,但与QH流体和粘性电子钳共享许多特性,并且可以用作模拟模拟器。了解手性活动物质的机械响应和不稳定性不仅将有助于设计活跃的物质实验,这些实验可用于理解量子长笛,还可以导致设计具有显着特性的新合成活性材料。 PI发展QH流体的半经典理论的长期努力将有望为一般量子流体的半经典理论带来新的理解,这是一个很长的开放问题,这是一个开放的问题。该项目的教育目标将通过三个主要工具实现:1)适用于新的Neords和高年级学生的局部动力学的局部动力学课程,该课程适用于毕业生和毕业生的高级学生。 2)在纽约城市学院本科生和高中数学科学与工程高中生的理论流体动力学领域的研究机会。 3)与大学学生合作,为纽约市高中学生提供有关流体动态的互动和演示的演讲,该计划为来自城市内部学校和代表性不足的团体的学生提供服务,以促进从学校的第一年平稳过渡到大学奖,该奖项反映了NSF的法定任务,并通过评估了该基金会的智力效果,并通过评估了基金会的范围。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ungappable edge theories with finite-dimensional Hilbert spaces
  • DOI:
    10.1103/physrevb.105.155137
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    S. Ganeshan;M. Levin
  • 通讯作者:
    S. Ganeshan;M. Levin
Hele-Shaw flow for parity odd three-dimensional fluids
  • DOI:
    10.1103/physrevfluids.7.114201
  • 发表时间:
    2022-11-16
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Reynolds, Dylan;Monteiro, Gustavo M.;Ganeshan, Sriram
  • 通讯作者:
    Ganeshan, Sriram
Nonlinear shallow water dynamics with odd viscosity
具有奇粘度的非线性浅水动力学
  • DOI:
    10.1103/physrevfluids.6.l092401
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Monteiro, Gustavo M.;Ganeshan, Sriram
  • 通讯作者:
    Ganeshan, Sriram
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sriram Ganeshan其他文献

Sriram Ganeshan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

量子Boltzmann方程若干问题的定性研究
  • 批准号:
    11871203
  • 批准年份:
    2018
  • 资助金额:
    51.0 万元
  • 项目类别:
    面上项目
几类半导体流体动力学模型的定性研究
  • 批准号:
    11801039
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
二维纳米结构材料等离子激发的动力学模拟
  • 批准号:
    11705017
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
量子等离子体中的流体动力学方程与色散波方程的相关数学研究
  • 批准号:
    11571254
  • 批准年份:
    2015
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
氯化法钛白氧化机理研究
  • 批准号:
    51404123
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hydrodynamics of quantum fluids
量子流体的流体动力学
  • 批准号:
    DP240101033
  • 财政年份:
    2024
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Discovery Projects
Pioneering the frontier of quantum hydrodynamics and turbulence
开拓量子流体动力学和湍流的前沿
  • 批准号:
    23K03305
  • 财政年份:
    2023
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: An Ultracold Atom Platform for Quantum Hydrodynamics Research and Undergraduate Training in Quantum Technology
LEAPS-MPS:用于量子流体动力学研究和量子技术本科生培训的超冷原子平台
  • 批准号:
    2137848
  • 财政年份:
    2022
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Standard Grant
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2022
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Discovery Grants Program - Individual
Hydrodynamics of quantum matter
量子物质的流体动力学
  • 批准号:
    RGPIN-2020-05842
  • 财政年份:
    2022
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了