CAREER: A Non-local Mathematical and Computational Paradigm for Failure in Unsaturated Soils: Integrated Research and Education through High Performance Computing

职业:非饱和土失效的非局部数学和计算范式:通过高性能计算进行综合研究和教育

基本信息

  • 批准号:
    1944009
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant will address fundamental knowledge gaps preventing the accurate characterization of multiphysics conditions driving failure (e.g., shear bands/cracks) of unsaturated soils. Unsaturated soil mechanics plays a vital role in geohazard assessment, as well as energy, environmental, and coastal geotechnics. Advances in these fields are hindered by unsaturated soil failure mechanisms that are poorly characterized and thus difficult to predict and mitigate. Such failures involve coupled multiphysics processes and arbitrary shear bands/cracks at multiple space and time scales. With recent advances in high-performance computing (HPC), computational modeling is becoming increasingly crucial for advancing our ability to characterize, predict, and mitigate such failures. This powerful tool must be coupled with new and robust numerical methods that are designed to harness and optimize this capability. This CAREER project will develop a novel non-local mathematical and computational paradigm for modeling failure phenomena in non-isothermal unsaturated soils through HPC. The hypothesis is that material heterogeneities and environmental loads are the critical triggers for failures (shear bands/cracks) in unsaturated soils, and that the prediction of such failures can be achieved via coupling HPC with new physics-based numerical tools. The rigorous integration of unsaturated soil mechanics, interface physics, poromechanics, thermodynamics, non-local vector calculus, and HPC can potentially revolutionize our modeling techniques for multiscale, multiphysics problems. Integrated research and educational activities through HPC will foster the interest of high-school and underrepresented students in STEM educations and careers and engage graduate students in globally collaborative research and effective dissemination of scientific knowledge to a diverse audience. The cultivated diverse collaboration network, including NSF Centers, U.S. national laboratories, leading consulting firms, and top global institutions, will increase the national and global impacts of this project and has the added benefit of exposing students to a dynamic team.The research goal of this CAREER grant is to better characterize and predict failures in unsaturated soils under environmental loads. This project will (i) formulate, implement, and validate a novel multiphysics peri-poromechanics (PPM) paradigm using non-local vector calculus and basic principles of physics and mechanics, and (ii) conduct extensive computational experiments through HPC. The new knowledge generated by this project includes a fundamental mechanistic understanding of multiphysics conditions driving failures of unsaturated soils that is crucial for building sustainable and resilient civil infrastructure. A significant outcome of this project is expected to be a novel multiphysics PPM paradigm that can potentially transform mathematical and computational modeling of failures in unsaturated soils due to its physical and mathematical consistency across multiple spatial scales. Original contributions expected are: (i) A novel physically, mathematically and computationally consistent paradigm for better modeling soil multiphysics; (ii) Next-generation non-local constitutive models for unsaturated soils; (iii) A validated open-source HPC tool for predicting unsaturated soil failures; and (iv) A new mechanistic understanding of multiphysics conditions driving failures in unsaturated soils. The educational plan will challenge and prepare next-generation engineers and scientists with a diverse knowledge base by integrating fundamental principles of mathematics, physics, mechanics, and HPC. This project will implement a series of initiatives, including two course modules on key concepts in unsaturated soil failure analysis and the vital role of HPC in basic scientific research, a cloud computing app, a dedicated wiki page, and NSF SimCenter and ASCE webinars.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展计划(职业)赠款将解决基本知识差距,以阻止不饱和土壤的多物理条件驱动失败(例如,剪切带/裂纹)的准确表征。 不饱和的土壤力学在地质扎华评估以及能量,环境和沿海地工技术中起着至关重要的作用。这些领域的进步受到了不饱和土壤衰竭机制的阻碍,这些机制的特征很差,因此难以预测和减轻。此类故障涉及在多个空间和时间尺度上耦合的多物理过程和任意剪切带/裂纹。随着高性能计算(HPC)的最新进展,计算建模对于提高表征,预测和减轻此类失败的能力变得越来越重要。该功能强大的工具必须与新的且可靠的数值方法相结合,这些方法旨在利用和优化此功能。这个职业项目将开发出一种新型的非本地数学和计算范式,用于通过HPC在非等热不饱和土壤中建模失败现象。假设是材料异质性和环境负荷是不饱和土壤中故障(剪切带/裂纹)的关键触发因素,并且可以通过与新的基于物理学的数值工具耦合HPC来实现此类故障的预测。不饱和土壤力学,界面物理学,门能,热力学,非本地载体计算和HPC的严格整合可能会彻底改变我们针对多尺度,多物理问题的建模技术。通过HPC进行的综合研究和教育活动将促进在STEM教育和职业中高中和代表性不足的学生的兴趣,并让研究生参与全球合作研究,并有效地传播科学知识向多样化的受众传播。包括NSF中心,美国国家实验室,领先的咨询公司以及顶级全球机构在内的各种多元化的合作网络将增加该项目的国家和全球影响,并为使学生暴露于动态团队的额外好处。这项职业赠款的研究目标是在环境负荷下更好地表征和预测未饱和土壤中的失败。该项目将(i)使用非本地载体计算和物理和力学的基本原理制定,实施和验证一种新型的多物理旁poromegranics(PPM)范式,以及(ii)通过HPC进行广泛的计算实验。该项目产生的新知识包括对驱动不饱和土壤失败的多物理条件的基本机械理解,这对于建立可持续和韧性的民用基础设施至关重要。预计该项目的一个重大结果将是一种新型的多物理PPM范式,由于其在多个空间尺度上的物理和数学一致性,可能会改变不饱和土壤中故障的数学和计算模型。预期的原始贡献是:(i)一种新颖的物理,数学和计算一致的范式,以更好地建模土壤多物理学; (ii)不饱和土壤的下一代非本地构成模型; (iii)经过验证的开源HPC工具,用于预测不饱和土壤失败; (iv)对多物理条件的新机械理解驱动不饱和土壤中的失败。该教育计划将通过整合数学,物理学,力学和HPC的基本原理来挑战和准备具有多种知识基础的下一代工程师和科学家。 This project will implement a series of initiatives, including two course modules on key concepts in unsaturated soil failure analysis and the vital role of HPC in basic scientific research, a cloud computing app, a dedicated wiki page, and NSF SimCenter and ASCE webinars.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Localized Failure of Soils via Nonlocal Poromechanics Model: A Case Study of the Lower San Fernando Dam Failure
通过非局部孔隙力学模型进行土壤动态局部破坏:圣费尔南多下游大坝溃决案例研究
  • DOI:
    10.1061/9780784483701.002
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Menon, Shashank;Song, Xiaoyu
  • 通讯作者:
    Song, Xiaoyu
Micro-polar periporomechanics for shear bands and cracks in porous media under dynamic loads
动态载荷下多孔介质剪切带和裂缝的微极性周孔隙力学
Nanoscale crack propagation in clay with water adsorption through reactive MD modeling
Nanoscale soil-water retention mechanism of unsaturated clay via MD and machine learning
基于 MD 和机器学习的非饱和粘土纳米级土壤保水机制
  • DOI:
    10.1016/j.compgeo.2023.105678
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Zhang, Zhe;Song, Xiaoyu
  • 通讯作者:
    Song, Xiaoyu
Computational multiphase periporomechanics for unguided cracking in unsaturated porous media
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoyu Song其他文献

Signature alignment based on GMM for on-line signature verification
基于GMM的签名对齐用于在线签名验证
  • DOI:
    10.1016/j.patcog.2016.12.019
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Xinghua Xia;Zhili Chen;Fangjun Luan;Xiaoyu Song
  • 通讯作者:
    Xiaoyu Song
Discriminative feature selection for on-line signature verification
在线签名验证的判别性特征选择
  • DOI:
    10.1016/j.patcog.2017.09.033
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Xinghua Xia;Xiaoyu Song;Fangjun Luan;Jungang Zheng;Zhili Chen;Xiafu Ma
  • 通讯作者:
    Xiafu Ma
Multiway Decision Graphs for Automated Hardware Verification
用于自动硬件验证的多路决策图
  • DOI:
    10.1023/a:1008663530211
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    F. Corella;Zijian Zhou;Xiaoyu Song;M. Langevin;E. Cerny
  • 通讯作者:
    E. Cerny
Base state with amendments spatio-temporal data model on time-slot retrieval based on temporary base-state
基于临时基态的修正时隙检索基态数据模型
A new algorithm for RNS magnitude comparison based on New Chinese Remainder Theorem II
基于新中国剩余定理II的RNS震级比较新算法

Xiaoyu Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoyu Song', 18)}}的其他基金

Molecular Dynamics Modeling of a Partially Saturated Clay-Water System
部分饱和粘土-水系统的分子动力学建模
  • 批准号:
    1659932
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于非共价键协同效应的受限偶氮均聚物易位合成、组装及性能研究
  • 批准号:
    22361006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
高分辨青光眼指标的非侵入式长期监测研究
  • 批准号:
    62301045
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非晶过渡金属多硫化物正极材料穿梭效应消除机制及其构效关系
  • 批准号:
    22309087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非均质玄武岩中二氧化碳快速矿化反应运移机理研究
  • 批准号:
    42307271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Non-Local Metamaterials and Metasurfaces for Next Generation Non-Reciprocal Acoustic Devices
职业:下一代非互易声学器件的非局域超材料和超表面
  • 批准号:
    2340782
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
ASHA 2: An Ethnographic Study Embedded in a Depression Treatment Trial
ASHA 2:抑郁症治疗试验中的人种学研究
  • 批准号:
    10746492
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
COCAINE USE AND HIV ANTIRETROVIRAL THERAPY EFFICACY IN THE CNS
可卡因的使用和 HIV 抗逆转录病毒治疗在中枢神经系统中的疗效
  • 批准号:
    10226215
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
COCAINE USE AND HIV ANTIRETROVIRAL THERAPY EFFICACY IN THE CNS
可卡因的使用和 HIV 抗逆转录病毒治疗在中枢神经系统中的疗效
  • 批准号:
    10020179
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
CAREER: Interfacing Spins with Photons - Quantum Many-Body Physics with Non-Local Interactions
职业:自旋与光子的接口 - 具有非局域相互作用的量子多体物理
  • 批准号:
    1753021
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了