CAREER: Physics-Constrained Modeling of Molecular Texts, Graphs, and Images for Deciphering Protein-Protein Interactions
职业:分子文本、图形和图像的物理约束建模,用于破译蛋白质-蛋白质相互作用
基本信息
- 批准号:1943008
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Proteins are essential parts of biological systems that often function through interactions. Toward understanding and engineering biological systems, data are rapidly accumulating on what proteins and what protein-protein interactions (PPIs) are present in such systems, but a major barrier remains as knowledge is limited on how proteins interact in 3-dimensional (3D) space. This project is designed to help fill the knowledge gap by developing computational methods that predict mechanism-revealing 3D structures formed by PPIs. While developing such methods, a data-focused yet physics-rationalized approach will be pursued, which is expected to advance the state of the knowledge across natural science and artificial intelligence. The outcome of the project will facilitate deciphering and engineering genome-wide PPIs for wide applications such as novel therapeutics, clean energy, and smart materials. The project is also designed with educational activities to promote the awareness, participation, training, and communication of data-driven science discovery for students, educators, domain scientists, and general public. The highly interdisciplinary research and education activities will be integrated to foster a diverse globally-competitive workforce, including historically underrepresented groups, to be ready for the era of big data. The research goal of this project is to advance the state of the art for structural PPI prediction and re-think and tackle the problem as explaining how pairs of proteins, represented in various data forms such as texts, graphs, or images, interact under governing physics. In pursuit of the goal, the research objectives of the project involve three levels of PPI structural prediction of increasing resolutions and challenges: residue-level contact maps, residue-level distance distributions, and atom-level 3D structures. Initiated by these objectives, novel machine learning algorithms will be developed and contribute to foundational algorithm research, including the effective integration and learning from heterogeneous data as well as the flexible representation and incorporation of domain knowledge. Such advance in foundational algorithm research will expand the applicability of PPI structural prediction to genome-scale and learn physical principles underlying diverse PPIs rather than “memorizing” patterns in similar PPIs. Moreover, such methodological advance is expected to impact broad application fields beyond PPI structural prediction. The proposed research is integrated with an educational plan by feeding research results and trained personnel to multi-scale education and outreach activities, involving educated students in research, and engaging general public in citizen science. New curricular and co-curricular activities will be developed to enhance the accessibility to interdisciplinary data-science training for a diverse student body and domain scientists. Also, multi-level outreach activities in collaboration with existing programs will be used to foster the awareness of and interest in interdisciplinary data science among diverse middle- and high-school students as well as the general public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蛋白质是通常通过相互作用起作用的生物系统的重要部分。为了理解和工程生物系统,数据迅速积累了这种系统中存在的蛋白质和哪些蛋白质蛋白质相互作用(PPI),但是由于知识在3维(3D)空间中相互作用的知识限制,因此存在一个主要的障碍。该项目旨在通过开发预测PPIS形成的机理3D结构的计算方法来帮助填补知识差距。在开发此类方法的同时,将采用以数据为重点但物理理性化的方法,这有望促进自然科学和人工智能的知识状态。该项目的结果将促进诸如新颖疗法,清洁能源和智能材料等广泛应用的解密和工程全基因组PPI。该项目还采用教育活动设计,以促进针对学生,教育者,领域科学家和公众的数据驱动科学发现的认识,参与,培训和交流。高度跨学科的研究和教育活动将集成,以促进全球竞争力的劳动力,包括历史上代表性不足的群体,为大数据时代做好准备。该项目的研究目的是推进结构PPI预测的最新技术,并重新考虑并解决该问题,以解释如何在各种数据形式(例如文本,图形或图像)中表示的蛋白质如何在理性物理学下进行交互。为了实现目标,该项目的研究目标涉及分辨率和挑战的三个级别的PPI结构性预测:保留级接触图,保留级别距离分布和原子级3D结构。由这些目标发起的,将开发新的机器学习算法并为基础算法研究做出贡献,包括从异质数据中的有效整合和学习,以及灵活的代表和域知识公司。基础算法研究中的这种进步将扩大PPI结构预测到基因组规模的适用性,并学习潜水员PPI的物理原理,而不是在类似的PPI中“记住”模式。此外,预计这种方法论将影响PPI结构预测以外的广泛应用领域。拟议的研究与一项教育计划结合在一起,通过为研究结果提供喂养和培训的人员进行多规模的教育和外展活动,涉及教育的学生参与研究,并参与公众参与公民科学。将开发新的课程和课外活动,以增强针对大型学生团体和领域科学家的跨学科数据科学培训的可访问性。此外,与现有计划合作的多层次外展活动将用于提高潜水员中学和高中生以及公众对跨学科数据科学的认识和兴趣。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子和更广泛的影响来评估NSF的法定任务,并被认为是珍贵的支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-Modality Protein Embedding for Compound-Protein Affinity and Contact Prediction
- DOI:10.1101/2020.11.29.403162
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Yuning You;Yang Shen
- 通讯作者:Yuning You;Yang Shen
Cross-modality and self-supervised protein embedding for compound–protein affinity and contact prediction
用于化合物-蛋白质亲和力和接触预测的跨模态和自监督蛋白质嵌入
- DOI:10.1093/bioinformatics/btac470
- 发表时间:2022
- 期刊:
- 影响因子:5.8
- 作者:You, Yuning;Shen, Yang
- 通讯作者:Shen, Yang
Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative
- DOI:10.48550/arxiv.2210.03801
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Tianxin Wei;Yuning You;Tianlong Chen;Yang Shen;Jingrui He;Zhangyang Wang
- 通讯作者:Tianxin Wei;Yuning You;Tianlong Chen;Yang Shen;Jingrui He;Zhangyang Wang
Does Inter-Protein Contact Prediction Benefit from Multi-Modal Data and Auxiliary Tasks?
- DOI:10.1101/2022.11.29.518454
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Arghamitra Talukder;Rujie Yin;Yuanfei Sun;Yang Shen;Yuning You
- 通讯作者:Arghamitra Talukder;Rujie Yin;Yuanfei Sun;Yang Shen;Yuning You
Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yuning You;Yue Cao;Tianlong Chen;Zhangyang Wang;Yang Shen
- 通讯作者:Yuning You;Yue Cao;Tianlong Chen;Zhangyang Wang;Yang Shen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Shen其他文献
Influence of total saponins from Asparagus cochinchinensis on cerebral blood flow and vascular resistance in anesthetized dogs: Influence of total saponins from Asparagus cochinchinensis on cerebral blood flow and vascular resistance in anesthetized dogs
天门冬总皂苷对麻醉犬脑血流量和血管阻力的影响:天门冬总皂苷对麻醉犬脑血流量和血管阻力的影响
- DOI:
10.3724/sp.j.1008.2008.00431 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jian;Hai;Cong;Yang Shen - 通讯作者:
Yang Shen
Nonreciprocal spin wave elementary excitation in dislocated dimerized Heisenberg chains
位错二聚海森堡链中的不可逆自旋波基元激发
- DOI:
10.1088/0953-8984/28/19/196001 - 发表时间:
2016-04 - 期刊:
- 影响因子:2.7
- 作者:
Liu Wanguo;Yang Shen;Guisheng Fang;Chongjun Jin - 通讯作者:
Chongjun Jin
Association between JAK1 gene polymorphisms and susceptibility to allergic rhinitis
JAK1基因多态性与变应性鼻炎易感性的关系
- DOI:
10.12932/ap0630.34.2.2016 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yang Shen;Yun Liu;Xia Ke;Hou-Yong Kang;Guo-Hua Hu;Su-Ling Hong - 通讯作者:
Su-Ling Hong
A dynamic pricing game for general insurance market
一般保险市场的动态定价博弈
- DOI:
10.1016/j.cam.2020.113349 - 发表时间:
2021-06 - 期刊:
- 影响因子:2.4
- 作者:
Danping Li;Bin Li;Yang Shen - 通讯作者:
Yang Shen
Quantitative Influence and Performance Analysis of VR Laparoscopic Surgical Training System
VR腹腔镜手术训练系统的定量影响及性能分析
- DOI:
10.21203/rs.3.rs-462363/v1 - 发表时间:
2021-04 - 期刊:
- 影响因子:3.6
- 作者:
Peng Yu;Junjun Pan;Zhaoxue Wang;Yang Shen;Jialun Li;Aimin Hao;Haipeng Wang - 通讯作者:
Haipeng Wang
Yang Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Shen', 18)}}的其他基金
Gaining new insights into the magmatic and tectonic processes at Kilauea Volcano from analysis of data recorded by the 2018 RAPID OBS array
通过分析 2018 年 RAPID OBS 阵列记录的数据,获得对基拉韦厄火山岩浆和构造过程的新见解
- 批准号:
1949620 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: An Open Access Experiment to Seismically Image Galapagos Plume-Ridge Interaction
合作研究:加拉帕戈斯羽流-山脊相互作用地震成像的开放获取实验
- 批准号:
1927133 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
RAPID: COLLABORATIVE RESEARCH: OBS survey of Kilauea's submarine south flank following the May 4, 2018 M6.9 earthquake and Lower East Rift Zone eruption
快速:协作研究:2018 年 5 月 4 日 M6.9 地震和下东裂谷带喷发后,OBS 对基拉韦厄海底南侧进行的调查
- 批准号:
1840972 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCF: EAGER: Dimension Reduction and Optimization Methods for Flexible Refinement of Protein Docking
CCF:EAGER:蛋白质对接灵活细化的降维和优化方法
- 批准号:
1546278 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCF: EAGER: Dimension Reduction and Optimization Methods for Flexible Refinement of Protein Docking
CCF:EAGER:蛋白质对接灵活细化的降维和优化方法
- 批准号:
1347865 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Developing a comprehensive model of subduction and continental accretion at Cascadia
开发卡斯卡迪亚俯冲和大陆增生的综合模型
- 批准号:
1144771 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: The Growth of the Tibetan Plateau - A Seismic Investigation of the Qilian Shan and Surrounding Tectonic Blocks
合作研究:青藏高原的生长——祁连山及周边构造块的地震调查
- 批准号:
0738779 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
"Upgrading computational facilities for URI Seismology and Marine Geophysics"
“升级 URI 地震学和海洋地球物理学的计算设施”
- 批准号:
0727919 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
"COLLABORATIVE RESEARCH: Compositional and thermal variations in the mantle transition zone from integrated seismological and petrological investigations"
“合作研究:地震学和岩石学综合研究中地幔过渡带的成分和热变化”
- 批准号:
0551117 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Joint tomography using three-dimensional sensitivity of finite-frequency body and surface waves: Methods and application to the Iceland hotspot
使用有限频率体波和表面波的三维灵敏度的联合断层扫描:方法及其在冰岛热点地区的应用
- 批准号:
0425747 - 财政年份:2004
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
新型血管微创介入智能碎溶栓系统设计与多物理效应下碎溶栓机理研究
- 批准号:82302400
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
- 批准号:22309205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
- 批准号:52306105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
- 批准号:12375219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
氧化/还原助剂修饰CdS用于光催化分解H2S制氢的超快光物理机理研究
- 批准号:22311530118
- 批准年份:2023
- 资助金额:37 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Physics-informed and physics-constrained machine learning for next generation imaging
用于下一代成像的物理知情和物理约束的机器学习
- 批准号:
2898384 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
AGS-PRF: Physics-Constrained Machine Learning-Based Models for Climate Simulations with Data Assimilation and Uncertainty Quantification
AGS-PRF:基于物理约束的机器学习模型,用于具有数据同化和不确定性量化的气候模拟
- 批准号:
2218197 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
New tests of physics with constrained large-scale structure simulations
通过约束大规模结构模拟进行新的物理测试
- 批准号:
2753834 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship
Physics-constrained adaptive learning for multi-physics optimization: Time-accurate prediction of chaotic and turbulent flows
用于多物理优化的物理约束自适应学习:混沌流和湍流的时间精确预测
- 批准号:
2606505 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Studentship
Theoretical condensed matter physics; with a focus on (conformal) field theories and constrained bosonic lattice models
理论凝聚态物理;
- 批准号:
2893444 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Studentship