CAREER: Developing Evaluation Methods for Network-based Findings

职业:开发基于网络的发现的评估方法

基本信息

  • 批准号:
    1942929
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Networks are all around us: transportation networks, power networks, communication networks, social networks, biological networks, the Internet, and many others. Networks are studied by various disciplines within science and engineering to glean the invaluable insights that networks can carry. However, most studies of networks look at networks that are uncertain, e.g., are noisy. Generalizing findings derived from such uncertain networks can lead to various erroneous findings. The goal of this project is to develop methods that can evaluate findings derived in studies of networks under these uncertainties. The developed techniques contribute towards a future in network science research, where findings are validated, reproducible, and comparable. The outcomes of this project will contribute to the development of a diverse globally-competitive STEM workforce, full participation of women and underrepresented minorities, enhanced research and education infrastructure, and increased public scientific literacy and engagement. The education plan involves four groups: K-12, undergraduate students, graduate students, and beyond university/public. Educational objectives are designed for these groups by integrating research into education, curricular development, presenting tutorials and seminars, and development of software and public data repositories.The project is motivated by the challenges and the research questions that exist around evaluating findings in studies of networks, e.g., whether the findings are specific to the network study, or if the data was correctly collected for the study. Addressing these challenges and answering these questions, the project will lead to the development of new knowledge on evaluating findings derived from networks, advancing the state of research on reproducibility in network science. It will provide a multiangle perspective towards evaluation of network science findings by developing evaluation methods and metrics to assess findings in terms of general scientific evaluation metrics, e.g., authenticity of findings. New network embedding methods will be designed especially for evaluation purposes. In particular, the project will develop specificity metrics for network studies to determine how specific are the findings to a network study. These metrics will be introduced by designing "graph identification" mechanisms, which rely on network embedding methods and designing an ``identity" for a graph. The project will further develop methods that can provide acceptance/rejection likelihoods for network-based findings, as a way to assess their authenticity. While the problems are in general NP-Complete, alternative practical solutions with acceptable performances are pursued by designing "network-based authentication" mechanisms that are inspired by biometrics research. The methods introduced contribute to the broader research areas of network representation and embedding, facilitate new applications such as network identification and authentication, and extend well-known techniques from statistics to networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络都在我们周围:运输网络,电力网络,通信网络,社交网络,生物网络,互联网等。科学和工程学中的各个学科对网络进行了研究,以收集网络可以携带的宝贵见解。 但是,大多数网络研究都查看不确定的网络,例如嘈杂。 从这种不确定的网络中得出的发现可以导致各种错误的发现。该项目的目的是开发可以评估这些不确定性下网络研究中得出的发现的方法。开发的技术有助于网络科学研究的未来,该研究结果得到了验证,可再现和可比性。该项目的结果将有助于发展全球多样的企业家劳动力,妇女的充分参与和代表性不足的少数民族,增强了研究和教育基础设施,并提高了公共科学素养和参与度。该教育计划涉及四个小组:K-12,本科生,研究生以及大学/公共之外。教育目标是通过将研究整合到教育,课程发展,介绍教程和研讨会以及软件和公共数据存储库的开发中,为这些群体设计的。该项目是由围绕网络研究中评估发现的挑战和研究问题激励,例如,这些发现是针对网络研究的特定的,还是正确收集了该研究的数据。在解决这些挑战并回答这些问题时,该项目将导致开发有关评估网络中发现的发现的新知识,从而推进了网络科学中可重复性的研究状态。 它将通过开发评估方法和指标来评估网络科学发现的多个观点,以评估一般科学评估指标,例如发现的真实性。新的网络嵌入方法将特别用于评估目的。特别是,该项目将开发网络研究的特异性指标,以确定网络研究的发现的特定程度。这些指标将通过设计“图形识别”机制来介绍,该机制依赖网络嵌入方法并为图设计``身份''。该项目将进一步开发可以为基于网络的发现提供接受/拒绝可能性的方法,例如一种评估其真实性的方法。网络表示和嵌入,促进新应用,例如网络识别和身份验证,并将著名的技术从统计数据扩展到网络。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛的影响来支持的,审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph sparsification with graph convolutional networks
  • DOI:
    10.1007/s41060-021-00288-8
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Jiayu Li;Tianyun Zhang;Hao Tian;Shengmin Jin;M. Fardad;R. Zafarani
  • 通讯作者:
    Jiayu Li;Tianyun Zhang;Hao Tian;Shengmin Jin;M. Fardad;R. Zafarani
Graph-Based Identification and Authentication: A Stochastic Kronecker Approach
基于图的识别和认证:随机克罗内克方法
“This is Fake! Shared it by Mistake”:Assessing the Intent of Fake News Spreaders
  • DOI:
    10.1145/3485447.3512264
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinyi Zhou;Kai Shu;V. Phoha;Huan Liu;R. Zafarani
  • 通讯作者:
    Xinyi Zhou;Kai Shu;V. Phoha;Huan Liu;R. Zafarani
AdverSparse: An Adversarial Attack Framework for Deep Spatial-Temporal Graph Neural Networks
A Spectral Representation of Networks: The Path of Subgraphs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reza Zafarani其他文献

Reza Zafarani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reza Zafarani', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Targeting Challenges in Computational Disinformation Research to Enhance Attribution, Detection, and Explanation
协作研究:SaTC:核心:小型:针对计算虚假信息研究中的挑战以增强归因、检测和解释
  • 批准号:
    2241070
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于慢性病病程发展的医疗保险跨部门补偿的政策评估和优化研究
  • 批准号:
    72304054
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字经济背景下的区域劳动力市场发展:理论机制与政策评估研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
都市圈临界合作区的功能地域识别、发展潜力评估及空间协同模式研究——以武汉都市圈为例
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
促进汽车市场区域协调发展的实证分析与政策评估研究
  • 批准号:
    72273022
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
  • 批准号:
    10785373
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Developing a Novel Clinical Care Model for Chronic Patellar Tendinopathy Utilizing Whole Person Healthcare
利用全人医疗保健开发慢性髌腱病的新型临床护理模式
  • 批准号:
    10739428
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Developing and testing a multicomponent breathwork intervention for people with chronic pain
为慢性疼痛患者开发和测试多成分呼吸干预
  • 批准号:
    10663651
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
A Mixed Methods Evaluation of Developing COPD Exacerbations in the MARC Cohort
MARC 队列中 COPD 加重的混合方法评估
  • 批准号:
    10605385
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Developing a Digital Training and Assessment Platform to Disseminate a Successful NIH-Supported College Preparation Model for Diversifying the U.S. Biomedical Workforce
开发数字培训和评估平台,以传播 NIH 支持的成功大学预科模式,实现美国生物医学劳动力多元化
  • 批准号:
    10601550
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了