CAREER: Machine Learning Driven Cross-Layer Optimizations for Storage

职业:机器学习驱动的跨层存储优化

基本信息

  • 批准号:
    1942754
  • 负责人:
  • 金额:
    $ 53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Recent advancements in computer science have enabled an exponential data growth outpacing technology scaling. As an increasing number of mobile devices, sensors and data acquisition systems is producing exabytes of information, analyzing the obtained data are becoming unfeasible, requiring novel approaches to store and compute on this vast amount of data. Improving the performance and efficiency of storage systems is of paramount importance to enable scientific progress, to improve the cost and energy consumption of IT systems and to enable analysis of large amounts of data. To achieve this goal, as part of this grant, novel approaches on the hardware, operating systems, data-center and application level will be developed. Enabling such new techniques will provide significant benefit for society. First, the new approaches developed in this project will improve efficiency and utilization of storage systems reducing the carbon footprint on our world. Secondly, improving the performance of storage devices enables novel applications such as new treatments leveraging storage and compute intensive genomics.As part of this project, cross layer optimizations will be developed to improve the hardware and software stack of storage systems using machine learning techniques. One main challenge of existing block storage devices is their transparency of internal state to software. This work addresses this shortcoming by extending storage devices with comprehensive data monitoring capabilities as well as with control knobs to optimize devices in an application specific way. The telemetry data obtained from these smart storage devices will be utilized to train machine learning models to optimize for application specific behavior as well as for determining optimal configurations of heterogeneous storage and compute environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机科学的最新进展使得数据呈指数级增长,超过了技术扩展的速度。随着越来越多的移动设备、传感器和数据采集系统产生数亿字节的信息,分析所获得的数据变得不可行,需要新的方法来存储和计算如此大量的数据。提高存储系统的性能和效率对于推动科学进步、降低IT系统的成本和能耗以及实现大量数据的分析至关重要。为了实现这一目标,作为这笔拨款的一部分,将开发硬件、操作系统、数据中心和应用程序级别的新方法。启用此类新技术将为社会带来重大利益。首先,该项目开发的新方法将提高存储系统的效率和利用率,减少我们世界的碳足迹。其次,提高存储设备的性能可以实现新颖的应用,例如利用存储和计算密集型基因组学的新治疗方法。作为该项目的一部分,将开发跨层优化,以使用机器学习技术改进存储系统的硬件和软件堆栈。现有块存储设备的主要挑战之一是其内部状态对软件的透明度。这项工作通过扩展存储设备来解决这一缺点,提供全面的数据监控功能以及控制旋钮,以特定于应用的方式优化设备。从这些智能存储设备获得的遥测数据将用于训练机器学习模型,以优化应用程序的特定行为以及确定异构存储和计算环境的最佳配置。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RAIL: Predictable, Low Tail Latency for NVMe Flash
  • DOI:
    10.1145/3465406
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heiner Litz;Javier González;Ana Klimovic;Christos Kozyrakis
  • 通讯作者:
    Heiner Litz;Javier González;Ana Klimovic;Christos Kozyrakis
Online Code Layout Optimizations via OCOLOS
通过 OCOLOS 在线代码布局优化
  • DOI:
    10.1109/mm.2023.3274758
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Zhang, Yuxuan;Khan, Tanvir Ahmed;Pokam, Gilles;Kasikci, Baris;Litz, Heiner;Devietti, Joseph
  • 通讯作者:
    Devietti, Joseph
Predict and Write: Using K-Means Clustering to Extend the Lifetime of NVM Storage
Deep Learning based Prefetching for Flash
基于深度学习的 Flash 预取
APT-GET: profile-guided timely software prefetching
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heiner Litz其他文献

Machine Learning for Systems
系统机器学习
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Heiner Litz;Milad Hashemi
  • 通讯作者:
    Milad Hashemi
CRISP: critical slice prefetching
CRISP:关键片预取
EXCITE-VM: Extending the virtual memory system to support snapshot isolation transactions
EXCITE-VM:扩展虚拟内存系统以支持快照隔离事务
TCCluster: A Cluster Architecture Utilizing the Processor Host Interface as a Network Interconnect
TCCluster:利用处理器主机接口作为网络互连的集群架构
The HTX-Board : A Rapid Prototyping Station
HTX-Board:快速原型制作站
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Fröning;M. Nüssle;David Slogsnat;Heiner Litz;U. Brüning
  • 通讯作者:
    U. Brüning

Heiner Litz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heiner Litz', 18)}}的其他基金

Phase II IUCRC CRSS: Center for Research in Storage Systems
第二阶段 IUCRC CRSS:存储系统研究中心
  • 批准号:
    1841545
  • 财政年份:
    2019
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
FoMR: Improving Microprocessor IPC for Data Center Workloads
FoMR:改进数据中心工作负载的微处理器 IPC
  • 批准号:
    1823559
  • 财政年份:
    2018
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant

相似国自然基金

基于可解释机器学习的科学知识角色转变预测研究
  • 批准号:
    72304108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
精神分裂症阴性症状经颅磁刺激治疗效应遗传影像学机器学习预测模型研究
  • 批准号:
    82371510
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习的蚀变矿物勘查方法与应用研究:以西藏岗讲矿床为例
  • 批准号:
    42363009
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于融合物理知识机器学习方法的圆柱浮式阵列水动力特性评估初探
  • 批准号:
    12302318
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习方法的土壤多孔介质中EPFRs环境行为与生态毒性研究
  • 批准号:
    42377385
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
Arlene George F32
阿琳·乔治 F32
  • 批准号:
    10722238
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了