CAREER: Facilitating Dependable Neuromorphic Computing: Vision, Architecture, and Impact on Programmability
职业:促进可靠的神经形态计算:愿景、架构和对可编程性的影响
基本信息
- 批准号:1942697
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning is enabling rapid growth in new applications that rely on sustained and automated interpretation of data better than humans. Neuromorphic chips mimicking biological neurons and synapses execute machine learning algorithms in an energy-efficient manner. However, current neuromorphic architectures are inherently unreliable. They introduce errors during execution, limiting the dependability of machine learning. This project will address dependability challenges of neuromorphic computing, by looking at all levels, from building error-resilient machine learning algorithms to designing fault-tolerant hardware. This project will advance the field by 1) making neuromorphic computing reliable, efficient, programmable, and easy-to-use for the community, 2) teaching future science and engineering students how to make machine learning algorithms error-resilient, 3) creating job opportunities through national and international internships and collaborations, 4) raising interest of high school students in STEM through neuromorphic computing-enabled robotics workshops, and 5) building an integrated neuromorphic community through a new focused conference on neuromorphic computing. The research activities will be tightly integrated into teaching. Throughout this project, robot workshops will be organized annually for Drexel's Eureka (STEM for girls) and Philadelphia's high school students, jointly with the City of Philadelphia, to raise this community's interest in STEM. The project will also recruit undergraduate and graduate students in research and outreach activities, with emphasis on female and minority students.This project addresses broad research questions with far-reaching implications in dependable neuromorphic computing: What are the reliability issues in neuromorphic architectures and how to model them? How do these reliability issues manifest as errors and impact the performance of machine learning algorithms? How to improve error tolerance in these algorithms by exploiting error resilience and self-repair properties in the brain, and how to proactively mitigate reliability issues in neuromorphic architectures to avoid errors in the first place? This project seeks to answer these research questions through the following three key research activities: 1) embedding biological self-repair properties in machine learning algorithms; 2) designing fault-tolerant hardware to implement these algorithms; and 3) proactively mitigating reliability issues and facilitating fault tolerance in hardware through algorithm/architecture co-design and design/technology co-optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习正在推动新应用程序的快速增长,这些应用程序比人类更好地依赖持续和自动的数据解释。模仿生物神经元和突触的神经形态芯片以节能的方式执行机器学习算法。然而,当前的神经形态架构本质上是不可靠的。它们在执行过程中引入错误,限制了机器学习的可靠性。该项目将通过从构建容错机器学习算法到设计容错硬件的各个层面来解决神经形态计算的可靠性挑战。该项目将通过以下方式推进该领域的发展:1) 使神经拟态计算变得可靠、高效、可编程且易于社区使用,2) 教授未来的科学和工程专业学生如何使机器学习算法具有容错性,3) 创造就业机会通过国内和国际实习和合作获得机会,4)通过支持神经拟态计算的机器人研讨会提高高中生对 STEM 的兴趣,5)通过新的神经拟态计算重点会议建立一个综合的神经拟态社区。研究活动将与教学紧密结合。在整个项目中,每年将与费城市联合为 Drexel 的尤里卡(女孩的 STEM)和费城的高中生举办机器人研讨会,以提高该社区对 STEM 的兴趣。该项目还将招募本科生和研究生参与研究和推广活动,重点是女性和少数族裔学生。该项目解决了对可靠的神经拟态计算具有深远影响的广泛研究问题:神经拟态架构中的可靠性问题是什么以及如何解决这些问题。为他们建模?这些可靠性问题如何表现为错误并影响机器学习算法的性能?如何通过利用大脑中的错误恢复和自我修复特性来提高这些算法的容错能力,以及如何主动缓解神经形态架构中的可靠性问题,从而从一开始就避免错误?该项目旨在通过以下三个关键研究活动来回答这些研究问题:1)将生物自我修复特性嵌入到机器学习算法中; 2)设计容错硬件来实现这些算法; 3) 通过算法/架构协同设计和设计/技术协同优化,主动缓解可靠性问题并促进硬件容错。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和更广泛的评估进行评估,认为值得支持。影响审查标准。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A design methodology for fault-tolerant computing using astrocyte neural networks
使用星形胶质细胞神经网络进行容错计算的设计方法
- DOI:10.1145/3528416.3530232
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Isik, Murat;Paul, Ankita;Varshika, M. Lakshmi;Das, Anup
- 通讯作者:Das, Anup
Improving Inference Lifetime of Neuromorphic Systems via Intelligent Synapse Mapping
通过智能突触映射提高神经形态系统的推理寿命
- DOI:10.1109/asap52443.2021.00010
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Song, Shihao;Titirsha, Twisha;Das, Anup
- 通讯作者:Das, Anup
Improving Dependability of Neuromorphic Computing With Non-Volatile Memory
使用非易失性存储器提高神经形态计算的可靠性
- DOI:10.1109/edcc51268.2020.00013
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Song, Shihao;Das, Anup;Kandasamy, Nagarajan
- 通讯作者:Kandasamy, Nagarajan
Design of a Tunable Astrocyte Neuromorphic Circuitry with Adaptable Fault Tolerance
具有自适应容错能力的可调谐星形胶质细胞神经形态电路的设计
- DOI:10.1109/mwscas57524.2023.10405978
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Varshika, M. L.;Johari, Sarah;Dubey, Jayanth;Das, Anup
- 通讯作者:Das, Anup
Aging-Aware Request Scheduling for Non-Volatile Main Memory
- DOI:10.1145/3394885.3431529
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Shihao Song;Anup Das;O. Mutlu;Nagarajan Kandasamy
- 通讯作者:Shihao Song;Anup Das;O. Mutlu;Nagarajan Kandasamy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anup Das其他文献
Graceful Performance Adaption through Hardware-Software Interaction for Autonomous Battery Management of Multicore Smartphones
通过软硬件交互实现多核智能手机自主电池管理的优雅性能调整
- DOI:
10.1109/igcc.2018.8752157 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Anup Das;Domenico Balsamo;G. Merrett;B. Al;F. Catthoor - 通讯作者:
F. Catthoor
Aging-aware hardware-software task partitioning for reliable reconfigurable multiprocessor systems
用于可靠的可重构多处理器系统的老化感知硬件软件任务分区
- DOI:
10.1109/cases.2013.6662505 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Anup Das;Akash Kumar;B. Veeravalli - 通讯作者:
B. Veeravalli
Additional file 1: of Hemodynamic effects of lung recruitment maneuvers in acute respiratory distress syndrome
附加文件 1:急性呼吸窘迫综合征中肺复张操作的血流动力学效应
- DOI:
10.6084/m9.figshare.c.3686710_d1 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Anup Das - 通讯作者:
Anup Das
Inhaled sGC Modulator Can Lower PH in Patients With COPD Without Deteriorating Oxygenation
吸入 sGC 调节剂可降低 COPD 患者的 PH 值,且不影响氧合
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Sina Saffaran;Wenfei Wang;Anup Das;W. Schmitt;Eva;J. Hardman;G. Weimann;D. Bates - 通讯作者:
D. Bates
Preserving Privacy of Neuromorphic Hardware From PCIe Congestion Side-Channel Attack
- DOI:
10.1109/compsac57700.2023.00094 - 发表时间:
2023-06 - 期刊:
- 影响因子:0
- 作者:
Anup Das - 通讯作者:
Anup Das
Anup Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anup Das', 18)}}的其他基金
RTML: Small: Design of System Software to Facilitate Real-Time Neuromorphic Computing
RTML:小型:促进实时神经形态计算的系统软件设计
- 批准号:
1937419 - 财政年份:2019
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似国自然基金
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MOGAT3调控脂代谢促进BRAF(V600E)突变型结直肠癌双靶向耐药机制及逆转策略的研究
- 批准号:82373163
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PDCD10通过CTGF促进巨噬细胞M2极化介导肝细胞癌免疫抑制的作用和机制研究
- 批准号:82303186
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
SME Support
NSF Postdoctoral Fellowship in Biology: Investigating the role of thermal stress response in facilitating adaptation in camel spiders
美国国家科学基金会生物学博士后奖学金:研究热应激反应在促进骆驼蜘蛛适应中的作用
- 批准号:
2305969 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Fellowship Award
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
- 批准号:
2422698 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Quantifying the effect of sediment microbial activity in facilitating silica sequestration during early diagenesis (QUALIFIED)
量化早期成岩过程中沉积物微生物活性对促进二氧化硅固存的影响(合格)
- 批准号:
2319429 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Constraints on the tempo and magnitude of explosive volcanism: facilitating long-term ash fall hazard assessments
对爆发性火山活动的速度和强度的限制:促进长期火山灰坠落危险评估
- 批准号:
MR/Y011767/1 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Fellowship