RAPID: A Smart and Mobile Sensor Fusion Framework for Earthquake Hazard Reduction, Situational Assessment, and Relief Efforts

RAPID:用于减少地震灾害、态势评估和救灾工作的智能移动传感器融合框架

基本信息

  • 批准号:
    1942053
  • 负责人:
  • 金额:
    $ 9.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Natural disasters including earthquakes, tsunamis, hurricanes and anthropogenic disasters, such as wildfires, are dynamic situations requiring constant monitoring as numerous hazards are constantly emerging that hinder humanitarian efforts and create deadly conditions for rescue workers and victims. Most disaster area assessment, and search and rescue efforts, rely heavily on visual imagery captured from cell phones, aerial video and other forms of media. Currently, real-time assessment for disasters depends entirely on the human operator's ability to visually identify the subject of interest in the video, or images captured. Further, damaged buildings and roadways, debris, smoke, fire, and environmental conditions such as rain complicate the human observer's ability to monitor situations for detecting victims and hazards. It is essential that rescuers can assess hazardous conditions before risking their lives and be armed with smart technologies that enable them to respond to dynamic situations. The recent events in Southern California (earthquakes) and Louisiana (Hurricane Barry) provide perishable data that will enable maturation of the proposed research activities. This plus the integration within the Smart Mobile Disaster Data Collection unit for response provides further justification of the RAPID award mechanism. The researchers will create a Smart Mobile Disaster Data Collection and Assessment tool for detecting and mapping out situational hazards using intelligent data fused information collected from multiple sensor technologies. Furthermore, this project aims to create a first-of-its-kind public database of collected imagery and media from disasters to help researchers and agencies share information or to assist in developing best practices and collaborative strategies. This project will also enable better visualization of disparate sources of data, thus making it conducive for human operator to detect hazards and victims. This research will also enhance safety and security applications across a wide range of areas including firefighting, disaster relief, and search-and-rescue. The approach of seamlessly utilizing and visualizing sensor information in a situational map to guide responders' actions and enhance their efficiency reduces the risk factor for responders.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地震、海啸、飓风等自然灾害和野火等人为灾害是动态情况,需要持续监测,因为不断出现的大量危害阻碍了人道主义工作,并为救援人员和受害者创造了致命的条件。大多数灾区评估以及搜救工作都严重依赖从手机、航拍视频和其他形式的媒体捕获的视觉图像。目前,灾难的实时评估完全取决于操作人员视觉识别视频或捕获的图像中感兴趣的主题的能力。此外,受损的建筑物和道路、碎片、烟雾、火灾以及降雨等环境条件使人类观察者监视情况以发现受害者和危险的能力变得复杂。救援人员必须在冒着生命危险之前评估危险情况,并配备智能技术,使他们能够应对动态情况。 最近在南加州(地震)和路易斯安那州(巴里飓风)发生的事件提供了易腐烂的数据,使拟议的研究活动得以成熟。 再加上用于响应的智能移动灾难数据收集单元的集成,进一步证明了 RAPID 奖励机制的合理性。研究人员将创建一个智能移动灾难数据收集和评估工具,利用从多种传感器技术收集的智能数据融合信息来检测和绘制情景灾害。此外,该项目旨在创建一个首个公共数据库,其中包含从灾难中收集的图像和媒体,以帮助研究人员和机构共享信息或协助制定最佳实践和协作策略。该项目还将实现不同数据源更好的可视化,从而有利于人类操作员检测危险和受害者。这项研究还将增强消防、救灾和搜救等广泛领域的安全和安保应用。在态势图中无缝利用和可视化传感器信息来指导响应人员的行动并提高其效率的方法降低了响应人员的风险因素。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和能力进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comprehensive Underwater Object Tracking Benchmark Dataset and Underwater Image Enhancement With GAN
  • DOI:
    10.1109/joe.2021.3086907
  • 发表时间:
    2021-07-27
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Panetta,Karen;Kezebou,Landry;Agaian,Sos
  • 通讯作者:
    Agaian,Sos
Face description using anisotropic gradient: thermal infrared to visible face recognition
使用各向异性梯度的面部描述:热红外到可见光面部识别
  • DOI:
    10.1117/12.2304898
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wan, Qianwen;Rao, Shishir Paramathma;Panetta, Karen;Agaian, Sos S.;Kaszowska, Aleksandra;Taylor, Holly;Voronina, V.
  • 通讯作者:
    Voronina, V.
Aerial Border Surveillance for Search and Rescue Missions Using Eye Tracking Techniques
Quaternion based neural network for hyperspectral image classification
基于四元数的神经网络用于高光谱图像分类
  • DOI:
    10.1117/12.2558808
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rao, Shishir Paramathma;Panetta, Karen;Agaian, Sos S.
  • 通讯作者:
    Agaian, Sos S.
Augmented reality-based vision-aid indoor navigation system in GPS denied environment
GPS 缺失环境下基于增强现实的视觉辅助室内导航系统
  • DOI:
    10.1117/12.2519224
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rajeev, Srijith;Wan, Qianwen;Yau, Kenny;Panetta, Karen;Agaian, Sos S.
  • 通讯作者:
    Agaian, Sos S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Panetta其他文献

Karen Panetta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Panetta', 18)}}的其他基金

FAST-TRAC: Identifying and Overcoming Barriers to Advanced Degree Attainment for Low Income Engineering Students
FAST-TRAC:识别并克服低收入工程专业学生获得高级学位的障碍
  • 批准号:
    1564987
  • 财政年份:
    2016
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
INDIVIDUAL: Nomination of Dr. Karen Panetta for Innovations in Engineering Education Mentoring for Attracting and Retaining Women in Engineering through her Nerd Girls Program
个人:提名凯伦·帕内塔 (Karen Panetta) 博士为工程教育指导创新,通过她的书呆子女孩计划吸引和留住工程领域的女性
  • 批准号:
    1036620
  • 财政年份:
    2012
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant
A Unified Simulation and Fault Environment for Mixed Signal Systems including MEMS Components
适用于包括 MEMS 组件的混合信号系统的统一仿真和故障环境
  • 批准号:
    0306464
  • 财政年份:
    2003
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Continuing Grant
CAREER: Robust Behavioral Fault Simulation Algorithms for Multilevel Simulation
职业:用于多级仿真的鲁棒行为故障仿真算法
  • 批准号:
    9733584
  • 财政年份:
    1998
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Continuing Grant
Compression and Interaction Algorithms for Modeling and Simulation Environments
用于建模和仿真环境的压缩和交互算法
  • 批准号:
    9528194
  • 财政年份:
    1996
  • 资助金额:
    $ 9.85万
  • 项目类别:
    Standard Grant

相似国自然基金

基于“活性-代谢组-基因组-SMART”整合策略发掘老鼠簕内生放线菌新型先导化合物
  • 批准号:
    82360696
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
大智慧还是小聪明?绩效压力对创造性绩效的双面效应机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    47 万元
  • 项目类别:
基于SMART设计建立中医药随机对照试验“随证施治”决策模型的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
  • 批准号:
    10861531
  • 财政年份:
    2023
  • 资助金额:
    $ 9.85万
  • 项目类别:
FEASible: Sensing Factors of Environment, Activity, and Sleep to Validate Metabolic Health Burden Among Latina Women
可行:通过环境、活动和睡眠的传感因素来验证拉丁裔女性的代谢健康负担
  • 批准号:
    10639447
  • 财政年份:
    2023
  • 资助金额:
    $ 9.85万
  • 项目类别:
Sensing Technologies for maternal depression treatment in low resource settings (StandStrong)
资源匮乏地区孕产妇抑郁症治疗的传感技术 (StandStrong)
  • 批准号:
    10857727
  • 财政年份:
    2023
  • 资助金额:
    $ 9.85万
  • 项目类别:
Mobile technologies to screen for prediabetes and type 2 diabetes in asymptomatic adults
用于筛查无症状成人糖尿病前期和 2 型糖尿病的移动技术
  • 批准号:
    10660714
  • 财政年份:
    2023
  • 资助金额:
    $ 9.85万
  • 项目类别:
REmote symptom COllection to improVE postopeRative care (RECOVER)
远程症状收集以改善术后护理(恢复)
  • 批准号:
    10637739
  • 财政年份:
    2023
  • 资助金额:
    $ 9.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了