RTML: Large: Continuous Adaptation for Decision Streams
RTML:大:决策流的持续适应
基本信息
- 批准号:1937301
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Systems that can efficiently make real-time decisions based on large-scale data streams will impact broad areas of daily life, including autonomous vehicles, personal assistants, medicine, and fraud detection tools. Such systems have become critical as machine learning is increasingly tasked with making richer decisions over constantly-changing large data streams for both consumer and industry applications. This project seeks to develop hardware-software systems capable of making such real-time decisions over large data streams while flexibly and continuously adapting to changes in their environment. This project will also support redesign of courses on hardware accelerators and parallel computing at Stanford University, with large-scale data streaming systems as a central driver. These courses are designed to provide students with a sufficiently strong background to engage in systems and machine learning research, thus enabling a diverse and much desired US workforce in an area of technology of current importance.This project will create tools and techniques for large-scale data streaming systems by producing innovations spanning software, hardware, and machine learning. Modern machine learning requires a vast amount of labeled data, and streaming scenarios only increase this requirement. To handle the need for more data, techniques for automatically labeling data (and in particular, temporal data) under real-time constraints will be developed. Because the environment for data streaming systems is constantly changing, the proposed project seeks to continuously adapt and specialize models to the current environment, leading to vastly improved efficiency. Real-time data streaming systems will require hardware that achieves both exceptional efficiency, as well as provides sufficient flexibility to support both real-time model training and inference; this project will develop such hardware. These innovations will be demonstrated and evaluated on two applications: next-generation video stream processing in autonomous vehicle, medical and industrial domains and smart routers for networking systems. The project will also collaborate with a synergistic DARPA program for related hardware development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可以根据大规模数据流有效做出实时决策的系统将影响日常生活的广泛领域,包括自动驾驶汽车,个人助理,医学和欺诈检测工具。由于机器学习的任务越来越多,要为消费者和行业应用程序不断变化的大型数据流而做出更丰富的决策,因此这种系统变得至关重要。该项目旨在开发能够通过大型数据流进行此类实时决策的硬件软件系统,同时灵活,不断地适应其环境的变化。该项目还将支持斯坦福大学(Stanford University)的硬件加速器和并行计算的课程重新设计,并以大规模的数据流系统作为中心驱动程序。这些课程旨在为学生提供足够强大的背景,以参与系统和机器学习研究,从而在当前重要性的技术领域中实现了多样化且众所周知的美国劳动力。该项目将通过生成跨越软件,硬件和机器学习的创新来创建创新的大规模数据流系统工具和技术。现代机器学习需要大量标记的数据,流媒体场景只会增加此要求。为了满足更多数据的需求,将开发在实时约束下自动标记数据(尤其是时间数据)的技术。由于数据流系统的环境正在不断变化,因此拟议的项目试图不断地适应并专门针对当前环境,从而大大提高了效率。实时数据流系统将需要实现出色效率的硬件,并提供足够的灵活性来支持实时模型培训和推理;该项目将开发这种硬件。这些创新将在两种应用程序上进行演示和评估:自动驾驶汽车,医疗和工业领域以及用于网络系统的智能路由器中的下一代视频流处理。该项目还将与一个协同的DARPA计划合作,以用于相关硬件开发。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oyekunle Olukotun其他文献
Oyekunle Olukotun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oyekunle Olukotun', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: A Stateful Switch Architecture for In-Network Compute
合作研究:CNS Core:Medium:用于网内计算的有状态交换机架构
- 批准号:
2211384 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
PPoSS: Planning: Eliminating the Bottlenecks to ML Usability and Scalability
PPoSS:规划:消除 ML 可用性和可扩展性的瓶颈
- 批准号:
2028602 - 财政年份:2020
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: From Volume to Velocity: Big Data Analytics in Near-Realtime
SHF:媒介:协作研究:从数量到速度:近实时的大数据分析
- 批准号:
1563078 - 财政年份:2016
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
SHF: Medium: PRISM: Platform for Rapid Investigation of efficient Scientific-computing & Machine-learning
SHF:媒介:PRISM:高效科学计算快速研究平台
- 批准号:
1563113 - 财政年份:2016
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
XPS:DSD:Synthesizing Domain Specific Systems
XPS:DSD:综合领域特定系统
- 批准号:
1337375 - 财政年份:2013
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
BIGDATA: Mid-Scale: DA: Collaborative Research: Genomes Galore - Core Techniques, Libraries, and Domain Specific Languages for High-Throughput DNA Sequencing
大数据:中规模:DA:协作研究:基因组丰富 - 高通量 DNA 测序的核心技术、库和领域特定语言
- 批准号:
1247701 - 财政年份:2013
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
SHF: Large: Domain Specific Language Infrastructure for Biological Simulation Software
SHF:大型:生物模拟软件的领域特定语言基础设施
- 批准号:
1111943 - 财政年份:2011
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
CSR---AES: Universal Transactions
CSR---AES:通用交易
- 批准号:
0720905 - 财政年份:2007
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
Extending the Limits of Large-Scale Shared Memory Multiprocessors
扩展大规模共享内存多处理器的限制
- 批准号:
0444470 - 财政年份:2004
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
ITR: Prototyping Multithreaded Systems
ITR:多线程系统原型设计
- 批准号:
0220138 - 财政年份:2002
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
相似国自然基金
基于连续尺度涡流合成法的非平稳风场大涡模拟研究
- 批准号:52378500
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于液体透镜的大视场连续光学变焦显微成像技术
- 批准号:62175006
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
基于液体透镜的大视场连续光学变焦显微成像技术
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
高效冷凝所需大倾角金属微针阵列的连续塑性成形工艺及机理
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空时连续性保障的大容量空地一体组网理论与技术
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Team Support to Improve Glycemic Control Using CGM in Diverse Populations (TEAM CGM)
团队支持在不同人群中使用 CGM 改善血糖控制 (TEAM CGM)
- 批准号:
10659721 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
A Scalable Continuous Production Platform for Large-Scale Manufacturing of Therapeutic Exosomes
用于大规模生产治疗性外泌体的可扩展连续生产平台
- 批准号:
10739425 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Continuous longitudinal atlas construction for the study of brain development
用于大脑发育研究的连续纵向图谱构建
- 批准号:
10683307 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Test case prioritization using machine learning for large-scale continuous integration environment
使用机器学习对大规模持续集成环境进行测试用例优先级排序
- 批准号:
576129-2022 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Alliance Grants