Elucidation of bioelectromechanics in cardiomyocyte proliferation after injury
损伤后心肌细胞增殖的生物机电学阐明
基本信息
- 批准号:1936519
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gene modification is a potential therapy to heal an injured human heart. Injured human hearts can create scarring, which may lead to negative cardiac remodeling and heart failure. In contrast, zebrafish hearts can fully regenerate even after severe injury. Interestingly, zebrafish cardiac genes are highly conserved in humans, i.e., they have remained essentially unchanged throughout evolution. Thus, zebrafish is a genetically controllable model for studying heart regeneration. Despite intensive studies in zebrafish, a key regeneration process involved in proliferation of cardiomyocytes (heart muscle cells) remains unclear. The goal of this project is to develop novel devices and optical systems to reveal the bio-electro-mechanical mechanisms that trigger cardiomyocyte proliferation during cardiac regeneration. Using an advanced flexible wireless ECG (electrocardiogram) jacket developed for zebrafish, the investigators will continuously monitor electrical conduction changes and evaluate the mechanical function during regeneration of the heart after injury. Advanced imaging will reveal the detailed molecular events and make it possible to measure biological changes along with the electrical and mechanical activity recorded via the jacket. This multidisciplinary project will provide a unique educational training experience for a diverse group of UT-Arlington’s undergraduate and graduate students. Furthermore, the undergraduate students’ names will be included on resultant publications to promote their passion of research involvement and to assist the students in their future professional endeavors. Outreach will continue by sharing research findings with local high schools through seminars or by providing a summer research opportunity.The goal of this project is to elucidate an unrevealed bio-electro-mechanical mechanism that induces cardiomyocyte proliferation during cardiac regeneration by using novel micro-devices and optical systems. Although there are many reports about the molecular event of Notch signaling in cardiomyocyte proliferation after injury, the electromechanical aspect of promoting cardiomyocyte proliferation remains unclear. Previous studies have shown that (a) Notch signaling is involved in cardiomyocyte proliferation after injury, and (b) Notch signaling is mechanosensitive and modulates cardiac electrical conduction. Studies are designed to test the hypothesis that there is a closed feedback loop among mechanosensitive Notch signaling, cardiac electrical conduction, and contraction that induces expression of certain Msx homeobox genes to promote cardiomyocyte proliferation during adult zebrafish cardiac regeneration. The Research Plan is organized under three tasks. The FIRST Task is to develop ECG acquisition and analysis from awake zebrafish during heart regeneration. The “fish ECG jacket” with a wireless microelectrode array (MEA) of 4 gold electrodes and electronics will be fabricated on parylene C membranes that enable continuous ECG acquisition while minimizing irritation and discomfort to the fish during regeneration. The ECG data of multiple fish will be sent to a cloud system with integrated machine learning algorithms for data processing and ECG pattern recognition. The SECOND Task is to develop high resolution multi-view fusion with axially swept light-sheet based ultra-microscopy (MV-ASLUM) to image ligand dependent-Notch and its downstream Msx expressions. MV-ASLUM will be integrated with a tissue clearing technique (CLARITY) to image in toto adult zebrafish hearts without physical sectioning. The THIRD Task is to modulate cardiac contractility and Notch signaling to regulate cardiomyocyte proliferation during regeneration via Msx expression. The Tg(hsp70:DN-MAML) zebrafish line and the CRISPR/CAS9 technique will be used to silence Notch and therefore inhibit Msx gene expression and cardiomyocyte proliferation and thereby verify the relationship between Notch inducing Msx gene expression and cardiac regeneration via cardiomyocyte proliferation. Contractility regulatory drugs (metoprolol, BDM, and isoproterenol) will be used to test the relationship of Notch inducible Msx gene expression during the regeneration process and nanoparticle (NP) targeted delivery will be used to overexpress Msx gene expression for regeneration after pharmacologically weakened cardiac contraction. This collaborative micro-device and biomedical imaging approach meets at the intersection of bio-electro-mechanics and cardiomyocyte proliferation during regeneration with a pathophysiological significance to molecular events and protection from myocardial infarction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基因修饰是治愈受损人类心脏的一种潜在疗法。受伤的人类心脏可能会产生疤痕,从而可能导致心脏重塑和心力衰竭。相比之下,斑马鱼心脏即使在严重损伤后也能完全再生。在人类中高度保守,即它们在整个进化过程中基本保持不变,因此,尽管对斑马鱼进行了深入的研究,但斑马鱼是研究心脏再生的关键再生过程。该项目的目标是开发新型设备和光学系统,以揭示在心脏再生过程中触发心肌细胞增殖的生物机电机制。为斑马鱼开发的夹克,研究人员将持续监测电传导变化并评估受伤后心脏再生过程中的机械功能,先进的成像将揭示详细的分子事件,并使得测量生物变化以及记录的电和机械活动成为可能。通过这个多学科项目将为德州大学阿灵顿分校的不同群体的本科生和研究生提供独特的教育培训体验,此外,本科生的名字将出现在最终的出版物中,以促进他们参与研究的热情并帮助他们。外展活动将继续通过研讨会或提供暑期研究机会与当地高中分享研究成果。该项目的目标是阐明一种尚未揭示的生物机电机制。尽管有许多关于损伤后心肌细胞增殖中Notch信号传导的分子事件的报道,但先前的研究表明,促进心肌细胞增殖的机电方面仍不清楚。 ) Notch 信号传导参与损伤后的心肌细胞增殖,并且 (b) Notch 信号传导具有机械敏感性并调节心脏电传导 研究旨在检验机械敏感性 Notch 之间存在闭合反馈环的假设。信号传导、心脏电传导和收缩诱导某些 Msx 同源盒基因的表达,以促进成年斑马鱼心脏再生过程中的心肌细胞增殖。第一个任务是开发清醒斑马鱼心脏期间的心电图采集和分析。带有由 4 个金电极和电子器件组成的无线微电极阵列 (MEA) 的“鱼心电图夹克”将在聚对二甲苯 C 膜上制造,可实现连续心电图采集,同时最大限度地减少刺激。多条鱼的心电图数据将被发送到具有集成机器学习算法的云系统,用于数据处理和心电图模式识别。第二个任务是开发具有轴向扫描光的高分辨率多视图融合。 -基于薄片的超显微镜(MV-ASLUM)对配体依赖性Notch及其下游Msx表达进行成像,将与组织透明技术(CLARITY)相结合,对成年斑马鱼进行成像。第三项任务是通过 Msx 表达调节心脏收缩力和 Notch 信号传导以调节心肌细胞增殖,Tg(hsp70:DN-MAML) 斑马鱼系和 CRISPR/CAS9 技术将用于沉默 Notch 和因此抑制Msx基因表达和心肌细胞增殖,从而验证Notch通过心肌细胞增殖调节药物(美托洛尔、美托洛尔、)诱导Msx基因表达与心脏再生之间的关系。 BDM和异丙肾上腺素)将用于测试Notch诱导的Msx基因表达在再生过程中的关系,纳米颗粒(NP)靶向递送将用于在药理减弱的心脏收缩后过度表达Msx基因表达以实现再生。和生物医学成像方法在再生过程中生物机电和心肌细胞增殖的交叉点上相遇,对分子事件和心肌梗塞的保护具有病理生理学意义。授予 NSF 的法定使命,并通过评估反映使用基金会的智力优点和更广泛的影响审查标准,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Correcting anisotropic intensity in light sheet images using dehazing and image morphology
- DOI:10.1063/1.5144613
- 发表时间:2020-09-01
- 期刊:
- 影响因子:6
- 作者:Teranikar, Tanveer;Messerschmidt, Victoria;Lee, Juhyun
- 通讯作者:Lee, Juhyun
Novel Image Processing to Restore Scattered Light-sheet Microscopic Imaging Technique and its Application for Quantifying Biomechanics
恢复散射光片显微成像技术的新型图像处理及其在量化生物力学中的应用
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:C Dominguez, T Teranikar
- 通讯作者:C Dominguez, T Teranikar
Assessing Pressure–Volume Relationship in Developing Heart of Zebrafish In-Vivo
- DOI:10.1007/s10439-021-02731-0
- 发表时间:2021-02
- 期刊:
- 影响因子:3.8
- 作者:Nabid Salehin;Cameron Villarreal;T. Teranikar;Benjamin Dubansky;Juhyun Lee;C. Chuong
- 通讯作者:Nabid Salehin;Cameron Villarreal;T. Teranikar;Benjamin Dubansky;Juhyun Lee;C. Chuong
A novel wireless ECG system for prolonged monitoring of multiple zebrafish for heart disease and drug screening studies.
- DOI:10.1016/j.bios.2021.113808
- 发表时间:2022-02-01
- 期刊:
- 影响因子:12.6
- 作者:Le T;Zhang J;Nguyen AH;Trigo Torres RS;Vo K;Dutt N;Lee J;Ding Y;Xu X;Lau MPH;Cao H
- 通讯作者:Cao H
Biomechanics of cardiac development in zebrafish model
- DOI:10.1016/j.cobme.2023.100459
- 发表时间:2023-05-03
- 期刊:
- 影响因子:3.9
- 作者:Teranikar,Tanveer;Nguyen,Phuc;Lee,Juhyun
- 通讯作者:Lee,Juhyun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juhyun Lee其他文献
Feature Detection to Segment Cardiomyocyte Nuclei for Investigating Cardiac Contractility
用于分割心肌细胞核以研究心脏收缩力的特征检测
- DOI:
10.1101/2021.03.03.433810 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
T. Teranikar;Cameron Villarreal;Nabid Salehin;Jessica Lim;Toluwani Ijaseun;H. Cao;C. Chuong;Juhyun Lee - 通讯作者:
Juhyun Lee
Effective separation method for uranium and thorium after borate fusion to minimize matrix influences in naturally occurring radionuclide materials
硼酸盐聚变后有效分离铀和钍的方法,以尽量减少天然放射性核素材料中基质的影响
- DOI:
10.1007/s10967-023-08811-w - 发表时间:
2023 - 期刊:
- 影响因子:1.6
- 作者:
Juhyun Lee;S. Yi - 通讯作者:
S. Yi
Increased risk of venous and arterial thromboembolism in patients with colorectal cancer receiving cetuximab-based combination chemotherapy: A population-based study in Korea.
接受基于西妥昔单抗的联合化疗的结直肠癌患者静脉和动脉血栓栓塞的风险增加:韩国的一项基于人群的研究。
- DOI:
10.1016/j.thromres.2023.10.005 - 发表时间:
2023 - 期刊:
- 影响因子:7.5
- 作者:
H. Yhim;Juhyun Lee;Kyoung Ha Kim;Sang;Ji Yun Lee;Hun;Junshik Hong;J. Lee;S. Bang - 通讯作者:
S. Bang
Eriodicyol inhibits osteoclast differentiation and ovariectomy-induced bone loss in vivo.
圣红环醇在体内抑制破骨细胞分化和卵巢切除术引起的骨质流失。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.7
- 作者:
Juhyun Lee;A Long Sae Mi Noh;Ting Zheng;Ju;M. Yim - 通讯作者:
M. Yim
Process Optimization for Synthesis of High-Quality Graphene Films by Low-Pressure Chemical Vapor Deposition
低压化学气相沉积合成高质量石墨烯薄膜的工艺优化
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dongheon Lee;Ki;Saebyuk Jeong;Juhyun Lee;B. Choi;J. Lee;O. Kim - 通讯作者:
O. Kim
Juhyun Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于垂直有机电化学晶体管的生物传感阵列技术研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
纤维基有机电化学晶体管生物传感器的器件制备及可穿戴应用研究
- 批准号:62104088
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于硫还原地杆菌的高性能微机电微生物燃料电池研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于酶/有序介孔碳复合栅极的有机电化学晶体管生物传感器
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
基于有机电化学晶体管的柔性纤维状生物传感器
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目