Topological Straintronic Devices
拓扑应变电子器件
基本信息
- 批准号:1936406
- 负责人:
- 金额:$ 36.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical:Semiconductor technologies have fueled the explosive growth of information-age technologies over the last half century. Further advances, however, are becoming increasingly difficult as devices dimensions approach atomic scales. This challenge requires new approaches that harness quantum phenomena. Novel electronic devices that exploit quantum properties have the potential for better device reliability and lower power consumption. Quantum technologies bring their own challenges. In particular, environmental effects can corrupt quantum information and significant resources are required for error correction. Topological materials offer great potential to address this problem because of their unique properties. In particular, quantum states are topologically protected by symmetries and are less subject to corruption. In this project elastic strain rather than electric or magnetic fields will be used to control electronic states in devices. Logic gates and other electronic devices are expected to be more reliable and use less power than conventional devices based on complementary metal oxide semiconductors. Interactive and engaging educational outreach programs will be integrated with the research project. These include Science Blog writing and Materials and Device Exhibits. These outreach efforts will promote scientific literacy to the general public and improve science appreciation by local K-12 students. This in turn will attract such students to modern science and technology in the early stages of their education. Finally, the participation of underrepresented groups in scientific research will be enhanced.Technical:This collaborative research project concerns novel strain-electronic (or straintronic) nanowire devices built upon two classes of topological materials, topological crystalline insulators (TCIs) and Weyl semimetals (WSMs), which host massless Dirac fermions on their surfaces and Weyl fermions with definite chirality in their bulk, respectively. These extraordinary surface or bulk states are topologically protected by symmetries and are rather robust against impurities, defects and disorder. Electronic devices exploiting these quantum/topological states are likely to have significantly improved reliability and/or reduced power consumption relative to conventional semiconductor-based electronics. The overall objective of this project is to study and manipulate the exotic quantum properties of Dirac and Weyl fermions in topological devices utilizing controllable elastic strain towards low-power, highly reliable electronic applications. In contrast to previous studies of bulk crystals and thin films, the proposed research will focus on nanowire/nanoribbon-based devices that harbor exceptional features for straintronic studies and applications. The success of the project will be built on the two PIs' existing collaboration, extensive familiarity with topological materials, and complementary expertise on material synthesis, device fabrication, magneto-transport studies, and theoretical modeling of electronic systems. The combined theoretical and experimental studies of strain-driven topological phase transitions and associated quantum transport properties will offer new paradigms for fundamental, potentially exploitable physics in electronic systems. The proposed research is also anticipated to represent a key step in establishing a new research area, topological straintronics: the manipulation of topological quasi-particles with controllable elastic strain.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:半导体技术在过去半个世纪中推动了信息时代技术的爆炸性增长。然而,随着设备尺寸接近原子量表,进一步的进步变得越来越困难。这个挑战需要利用量子现象的新方法。利用量子性能的新型电子设备具有更好的设备可靠性和降低功耗。量子技术带来自己的挑战。特别是,环境效应会破坏量子信息,并且需要大量资源进行错误纠正。由于其独特的特性,拓扑材料为解决这个问题提供了巨大的潜力。特别是,量子状态在拓扑上受到对称性的保护,并且不受腐败的影响。在此项目中,弹性应变而不是电场或磁场将用于控制设备中的电子状态。与基于互补的金属氧化物半导体相比,逻辑门和其他电子设备的可靠性更为可靠,并且使用较少的功率。互动和引人入胜的教育外展计划将与研究项目集成。其中包括科学博客写作以及材料和设备展览。这些宣传工作将促进对公众的科学素养,并提高本地K-12学生的科学欣赏。反过来,这将在教育的早期阶段吸引这些学生进入现代科学和技术。最后,将增强代表性小组参与科学研究的参与。技术研究项目涉及新颖的应变电子(或劳累)纳米线设备建立在两类拓扑材料,拓扑结晶绝缘子(TCIS)和无质量的福音的福音式福利范围内的拓扑晶体绝缘子(TCIS)和无质量的福音式构建的拓扑材料(TCIS)和无质量的福音,这些纳米线的纳米线构建的纳米线构建。分别散装。这些非凡的表面或散装状态在拓扑上受到对称性的保护,并且对杂质,缺陷和混乱非常有力。利用这些量子/拓扑状态的电子设备相对于常规的半导体电子设备,可能具有显着提高的可靠性和/或降低功耗。该项目的总体目的是研究和操纵拓扑设备中狄拉克和Weyl fermions的外来量子性能,利用可控的弹性应变来实现低功率,高度可靠的电子应用。与先前对散装晶体和薄膜的研究相反,拟议的研究将集中在纳米线/纳米孔基的设备上,这些设备具有劳累研究和应用的杰出特征。该项目的成功将建立在两个PI的现有合作,对拓扑材料的广泛熟悉程度以及有关材料合成,设备制造,磁通量研究和电子系统理论建模的互补专业知识。 应变驱动拓扑相变和相关量子传输特性的理论和实验研究将为电子系统中的基本,潜在可利用的物理学提供新的范式。预计拟议的研究还可以代表建立一个新的研究领域的关键步骤:拓扑劳累基质学:具有可控弹性应变的拓扑准粒子的操纵。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的审查标准来通过评估来通过评估来获得支持的。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Remarkable suppression of lattice thermal conductivity by electron-phonon scattering in iridium dioxide nanowires
- DOI:10.1016/j.mtphys.2021.100517
- 发表时间:2021-11
- 期刊:
- 影响因子:11.5
- 作者:Y. Tao;Z. Pan;T. Ruch;X. Zhan;Y. Chen;S.X. Zhang;D. Li
- 通讯作者:Y. Tao;Z. Pan;T. Ruch;X. Zhan;Y. Chen;S.X. Zhang;D. Li
Broken symmetry and competing orders in Weyl semimetal interfaces
- DOI:10.1103/physrevb.107.l041402
- 发表时间:2022-05
- 期刊:
- 影响因子:3.7
- 作者:Ritajit Kundu;H. Fertig;A. Kundu
- 通讯作者:Ritajit Kundu;H. Fertig;A. Kundu
Extreme Air Sensitivity and Nonself-Limited Oxidation of Two-Dimensional Magnetic Tellurides
- DOI:10.1021/acsmaterialslett.3c00395
- 发表时间:2023-06
- 期刊:
- 影响因子:11.4
- 作者:Amanda L. Coughlin;Jun-Jie Zhang;Sammy Bourji;B. Wei;Gaihua Ye;Zhipeng Ye;Jeonghoon Hong;T. Zhang;Magda Andrade;Xun Zhan;R. He;Jian Wang;B. Yakobson;Y. Losovyj;C. Chu;L. Deng;Shixiong Zhang
- 通讯作者:Amanda L. Coughlin;Jun-Jie Zhang;Sammy Bourji;B. Wei;Gaihua Ye;Zhipeng Ye;Jeonghoon Hong;T. Zhang;Magda Andrade;Xun Zhan;R. He;Jian Wang;B. Yakobson;Y. Losovyj;C. Chu;L. Deng;Shixiong Zhang
Helical Edge States and Quantum Phase Transitions in Tetralayer Graphene
- DOI:10.1103/physrevlett.125.036803
- 发表时间:2020-07-13
- 期刊:
- 影响因子:8.6
- 作者:Che, Shi;Shi, Yanmeng;Fertig, Herbert A.
- 通讯作者:Fertig, Herbert A.
Quantum geometric exciton drift velocity
- DOI:10.1103/physrevb.103.115422
- 发表时间:2021-03-15
- 期刊:
- 影响因子:3.7
- 作者:Cao, Jinlyu;Fertig, H. A.;Brey, Luis
- 通讯作者:Brey, Luis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shixiong Zhang其他文献
Compressive strain induced enhancement of transverse-electric polarized ultraviolet light emission for AlGaN quantum wells
AlGaN 量子阱横向电极偏振紫外光发射的压应变诱导增强
- DOI:
10.1016/j.spmi.2020.106749 - 发表时间:
2020-11 - 期刊:
- 影响因子:3.1
- 作者:
Shixiong Zhang;Yunfan Zhang;Ning Tang;Weiying Wang;Xinjuan Chen;Lei Fu;Chenguang He;Yuanjie Lv;Zhihong Feng;Fujun Xu;Tongjun Yu;Weikun Ge;Bo Shen - 通讯作者:
Bo Shen
Weakly supervised anomaly detection based on sparsity prior
基于稀疏先验的弱监督异常检测
- DOI:
10.3934/era.2024169 - 发表时间:
2024 - 期刊:
- 影响因子:0.8
- 作者:
Kaixuan Wang;Shixiong Zhang;Yang Cao;Lu Yang - 通讯作者:
Lu Yang
Mixed solvent-assisted synthesis of high mass loading amorphous NiCo-MOF as a promising electrode material for supercapacitors.
混合溶剂辅助合成高质量负载非晶 NiCo-MOF 作为超级电容器的有前景的电极材料。
- DOI:
10.1039/d3dt02354k - 发表时间:
2023 - 期刊:
- 影响因子:4
- 作者:
Faxue Lu;Junnan Yao;Yajun Ji;Dong Shi;Pengcheng Zhang;Shixiong Zhang - 通讯作者:
Shixiong Zhang
Causal role of immune cells in inflammatory bowel disease: A Mendelian randomization study
免疫细胞在炎症性肠病中的因果作用:孟德尔随机研究
- DOI:
10.1097/md.0000000000037537 - 发表时间:
2024 - 期刊:
- 影响因子:1.6
- 作者:
Haoyu Chen;Qi Li;Tianyu Gao;Yuhua Wang;Xuetong Ren;Shaowei Liu;Shixiong Zhang;Pingping Zhou;Jingjing Lyu;Haiyan Bai;Yangang Wang - 通讯作者:
Yangang Wang
Effectiveness of traditional Chinese exercise for patients with knee osteoarthritis: A systematic review and meta-analysis.
中国传统运动对膝骨关节炎患者的有效性:系统评价和荟萃分析。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.5
- 作者:
Xiaohu Chang;Shixiong Zhang;Jian Zhang;Xinjie J Tang - 通讯作者:
Xinjie J Tang
Shixiong Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shixiong Zhang', 18)}}的其他基金
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 36.69万 - 项目类别:
Continuing Grant
Realizing and Manipulating Magnetism and Transport in Two-Dimensional Transition Metal Dichalcogenides
二维过渡金属二硫属化物中磁性和输运的实现和操控
- 批准号:
1506460 - 财政年份:2015
- 资助金额:
$ 36.69万 - 项目类别:
Continuing Grant
相似国自然基金
柑橘意大利青霉咪鲜胺抗性菌株耐药性形成机制研究
- 批准号:32372396
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
粘质沙雷氏菌BRC-CXG2菌株对马尾松促生抗病的作用机制
- 批准号:32301602
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PPAR通路探索肠球菌新型菌株B6及其代谢产物致肥胖儿童NAFLD的作用与机制
- 批准号:82304171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
黏细菌模式菌株Myxococcus xanthus DK1622底盘3D基因组中的空间位置效应及其应用
- 批准号:32301220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代谢工程与微生物传感器结合筛选高效产糖酵母底盘菌株
- 批准号:22308369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
イネによる病原性菌株と非病原性菌株由来フラジェリンの特異的認識の分子機構
水稻特异性识别致病和非致病菌株鞭毛蛋白的分子机制
- 批准号:
24K08836 - 财政年份:2024
- 资助金额:
$ 36.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
糸状菌、二形性酵母におけるリン脂質合成制御機構の全体像の解明と有用菌株創製
阐明丝状真菌和二态酵母中磷脂合成控制机制的整体情况并创建有用的菌株
- 批准号:
23K23501 - 财政年份:2024
- 资助金额:
$ 36.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
納豆菌によるアグリコン型イソフラボン生成機構の解明と有望株の選抜手法の確立
纳豆芽孢杆菌糖苷配基型异黄酮生产机制的阐明及有前景菌株的筛选方法的建立
- 批准号:
24K14689 - 财政年份:2024
- 资助金额:
$ 36.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
土壌細菌Ralstonia sp. XP-1株のキサントプテリン分解機構の解明
土壤细菌 Ralstonia XP-1 菌株黄蝶呤分解机制的阐明
- 批准号:
24K08654 - 财政年份:2024
- 资助金额:
$ 36.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
非病原性ウシ型結核菌BCG株を用いた進化実験による多剤耐性進化可能性の検証
使用非致病性牛分枝杆菌 BCG 菌株通过进化实验验证多药耐药性进化的可能性
- 批准号:
24K02009 - 财政年份:2024
- 资助金额:
$ 36.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)