Modification of zeolites with organic ligands for improved separations
用有机配体对沸石进行改性以改善分离
基本信息
- 批准号:1916738
- 负责人:
- 金额:$ 44.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The separation of mixtures to yield high purity components accounts for a large fraction of the world's energy consumption. Separations of alkanes from alkenes, for example propane from propylene, are among the most difficult and energy intensive. Improving these separations processes is vital to decreasing the cost and environmental impact of commodity chemicals and plastics production. Microporous materials such as zeolites enable separations based on differences in molecular size. Efforts to further enhance zeolite separation efficiencies require new methods for controlling interactions between the gases and sorbents. This project will develop a new approach to selectivity control that uses deposition of tailored organic ligands on the zeolite surface and pores. By controlling the properties of the ligands, it is possible to regulate their location on the microporous material as well as the effective size and chemical functionality of the pores. Achieving this enhanced level of control can yield dramatic improvements in separations of molecules of similar size, including propylene and propane. Both experimental and computational methods will be used to understand how the organic ligands bind with zeolites and how the organic-modified material affects sorption and diffusion of alkanes, alkenes, and other key gases. The overall research effort is directed toward enabling the design of improved materials for gas separations. This research is also closely linked with discovery-based learning for undergraduate and high school students and with development and dissemination of online learning tools for science and engineering students at different education levels. This project aims to develop a new approach to selectivity control in separations. The approach employs the controlled deposition of organophosphonic acid ligands used in organic self-assembly processes to tailor the zeolite external surface and pores. Changes in the chemical structure of the ligands can be used to control their organization within the zeolites and can yield dramatic improvements in the selective adsorption of molecules of similar size, including propylene and propane. A combination of experimental and computational techniques will be used to develop structure-property relationships for ligand-modified zeolites. By varying both the zeolite structure and the size of the ligands, these studies will examine cases in which deposition is confined to the external surface of the zeolites, as well as situations where the modifiers can partially or fully enter the zeolite pores. The project will also focus on determining how the nature of the organic ligand can be tuned to alter diffusion of gases into the zeolite based on changes in ligand-gas affinities. Finally, quantum and classical molecular modeling tools will be employed to design improved combinations of ligands and zeolites tuned for selected separations such as propane-propylene and CO2-methane. The project will develop understanding of and the ability to control separations processes that account for major energy expenditures in the chemical industry. The proposed research will be carried out in conjunction with graduate, undergraduate, and high school students; this team will collaboratively develop and implement level-appropriate research, mentoring, and outreach goals. The team will also develop student-accessible active learning tools related to sorption- and membranes-based separations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分离混合物以产生高纯度成分占世界能源消耗的很大一部分。烷烃与烯烃的分离,例如丙烷与丙烯的分离,是最困难且能源密集的过程之一。改进这些分离工艺对于降低大宗化学品和塑料生产的成本和环境影响至关重要。沸石等微孔材料可以根据分子大小的差异进行分离。进一步提高沸石分离效率需要新的方法来控制气体和吸附剂之间的相互作用。该项目将开发一种新的选择性控制方法,该方法利用在沸石表面和孔隙上沉积定制的有机配体。通过控制配体的性质,可以调节它们在微孔材料上的位置以及孔的有效尺寸和化学功能。实现这种增强的控制水平可以显着改善类似尺寸分子(包括丙烯和丙烷)的分离。实验和计算方法将用于了解有机配体如何与沸石结合以及有机改性材料如何影响烷烃、烯烃和其他关键气体的吸附和扩散。总体研究工作旨在设计改进的气体分离材料。这项研究还与本科生和高中生的基于发现的学习以及针对不同教育水平的理工科学生的在线学习工具的开发和传播密切相关。该项目旨在开发一种新的分离选择性控制方法。该方法采用有机自组装过程中使用的有机膦酸配体的受控沉积来定制沸石外表面和孔隙。配体化学结构的变化可用于控制它们在沸石内的组织,并可显着改善类似尺寸分子(包括丙烯和丙烷)的选择性吸附。实验和计算技术的结合将用于开发配体改性沸石的结构-性能关系。通过改变沸石结构和配体的尺寸,这些研究将检查沉积仅限于沸石外表面的情况,以及改性剂可以部分或完全进入沸石孔隙的情况。该项目还将重点确定如何调整有机配体的性质,以根据配体-气体亲和力的变化来改变气体扩散到沸石中。最后,将采用量子和经典分子建模工具来设计改进的配体和沸石组合,以适应丙烷-丙烯和二氧化碳-甲烷等选定的分离。该项目将培养人们对占化学工业主要能源支出的分离过程的理解和控制能力。拟议的研究将与研究生、本科生和高中生一起进行;该团队将协作制定和实施适合级别的研究、指导和推广目标。该团队还将开发与基于吸附和基于膜的分离相关的学生可用的主动学习工具。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanism of selectivity control for zeolites modified with organic monolayers
有机单层改性沸石的选择性控制机理
- DOI:10.1016/j.micromeso.2022.111913
- 发表时间:2022-04-01
- 期刊:
- 影响因子:5.2
- 作者:Xinpei Zhou;J. Falconer;J. Medlin
- 通讯作者:J. Medlin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Will Medlin其他文献
Reaction paths for hydrodeoxygenation of furfuryl alcohol at TiO2/Pd interfaces
TiO2/Pd 界面糠醇加氢脱氧反应路径
- DOI:
10.1016/j.jcat.2019.07.012 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:7.3
- 作者:
Shyam Deo;Will Medlin;E. Nikolla;M. Janik - 通讯作者:
M. Janik
Incorporating ScreenCasts into Chemical Engineering Courses
将 ScreenCast 纳入化学工程课程
- DOI:
10.18260/1-2--18130 - 发表时间:
2011-06-26 - 期刊:
- 影响因子:0
- 作者:
J. L. D. Grazia;J. Falconer;G. Nicodemus;Will Medlin - 通讯作者:
Will Medlin
Will Medlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Will Medlin', 18)}}的其他基金
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349884 - 财政年份:2024
- 资助金额:
$ 44.97万 - 项目类别:
Continuing Grant
Collaborative Research: ECO-CBET: Coupled homogeneous and heterogeneous processes for an environmentally sustainable lignin-first biorefinery
合作研究:ECO-CBET:环境可持续的木质素优先生物精炼厂的均质和异质耦合工艺
- 批准号:
2218958 - 财政年份:2022
- 资助金额:
$ 44.97万 - 项目类别:
Continuing Grant
EFRI E3P: Hydrogenolysis for upcycling of polyesters and mixed plastics
EFRI E3P:用于聚酯和混合塑料升级改造的氢解
- 批准号:
2132033 - 财政年份:2021
- 资助金额:
$ 44.97万 - 项目类别:
Standard Grant
Catalytic Selectivity Control in Electrochemical Systems using Self-Assembled Monolayers
使用自组装单层膜控制电化学系统中的催化选择性
- 批准号:
2004090 - 财政年份:2020
- 资助金额:
$ 44.97万 - 项目类别:
Standard Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
- 批准号:
1900183 - 财政年份:2019
- 资助金额:
$ 44.97万 - 项目类别:
Standard Grant
SusChEM: Collaborative Research: Surface Reaction of Oxygenates on Lewis Acidic Metal Oxides
SusChEM:合作研究:路易斯酸性金属氧化物上氧化物的表面反应
- 批准号:
1705500 - 财政年份:2017
- 资助金额:
$ 44.97万 - 项目类别:
Standard Grant
SusChEM: Surface Active Site Design for Selective Deoxygenation
SusChEM:用于选择性脱氧的表面活性位点设计
- 批准号:
1464979 - 财政年份:2015
- 资助金额:
$ 44.97万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
- 批准号:
1436862 - 财政年份:2014
- 资助金额:
$ 44.97万 - 项目类别:
Standard Grant
Understanding and Controlling Reactivity of Functionalized Alcohols on Metal Surfaces
了解和控制金属表面官能化醇的反应性
- 批准号:
1149752 - 财政年份:2012
- 资助金额:
$ 44.97万 - 项目类别:
Standard Grant
Surface-level investigations of adsorbate-adsorbate interactions on thiolate-modified surfaces
硫醇盐改性表面吸附质-吸附质相互作用的表面研究
- 批准号:
1160040 - 财政年份:2012
- 资助金额:
$ 44.97万 - 项目类别:
Standard Grant
相似国自然基金
基于微波耦合沸石分子筛的有机固废热解产物定向调控机制研究
- 批准号:22373035
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
创制有机功能化改性镂空沸石固体酸高效催化大体积疏水性有机化合物在水介质中的转化
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于金属有机沸石的分子弹簧设计合成、力学性能调控及机制
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
镍基金属有机配合物模板导向的硅基沸石分子筛的设计合成及催化应用
- 批准号:21802053
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于缓释氮磷复合沸石的土壤畜禽有机肥源抗性基因污染阻控机制研究
- 批准号:21777120
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Role of Cyclohexanone Toxicity in Mediating Congenital Cardiac Surgery Outcomes
环己酮毒性在调节先天性心脏手术结果中的作用
- 批准号:
10627951 - 财政年份:2022
- 资助金额:
$ 44.97万 - 项目类别:
Role of Cyclohexanone Toxicity in Mediating Congenital Cardiac Surgery Outcomes
环己酮毒性在调节先天性心脏手术结果中的作用
- 批准号:
10444513 - 财政年份:2022
- 资助金额:
$ 44.97万 - 项目类别:
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
- 批准号:
10352963 - 财政年份:2022
- 资助金额:
$ 44.97万 - 项目类别:
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
- 批准号:
10700801 - 财政年份:2022
- 资助金额:
$ 44.97万 - 项目类别:
Electron microscopy for nano-chemistry of metal-organic frameworks and zeolites
用于金属有机骨架和沸石纳米化学的电子显微镜
- 批准号:
2596546 - 财政年份:2021
- 资助金额:
$ 44.97万 - 项目类别:
Studentship