CUE Ethics: Collaborative Research: Open Collaborative Experiential Learning (OCEL.AI): Bridging Digital Divides in Undergraduate Education of Data Science

CUE 伦理:协作研究:开放式协作体验式学习 (OCEL.AI):弥合数据科学本科教育中的数字鸿沟

基本信息

  • 批准号:
    1935076
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The University of Missouri-Kansas City, in partnership with Eastern Michigan University, Essex County College, and University of Florida, proposes the Open Collaborative Experiential Learning (OCEL.AI) project, an Open Knowledge Network (OKN), that supports postsecondary instructors who teach underserved populations Computer Science (CS)+Journalism and Strategic Communication within their existing institutional structure. Recent advances in artificial intelligence (AI), and specifically deep learning (DL) have improved the state-of-the-art results of the data-driven approaches and tools in a wide range of domains. To build the future talent ecosystem, there is an urgent need to create a qualified data science workforce that can perform critical functions in a variety of domains and aspects of human society, such as journalism, health communication, and advertising. To address this need, the intelligent cloud-based collaborative tool will provide to the AI and data-driven research and education communities what GitHub and code repositories provide to the software engineering and open-source communities. In this OKN, minority students will feel empowered and motivated to study data science since they can share, reuse, reproduce, deploy, discuss, learn, and apply data and AI models in real time. It is expected that students taking these CS+Journalism and Strategic Communication courses will see increased interest, self-efficacy, and motivation in studying data science among both CS majors and non-majors - in particular among black, female, and Hispanic students. Organized as a Networked Improvement Community, the project will focus on three major tasks: 1) launching an online faculty professional development program on OCEL.AI that has been developed by the researcher's lab; 2) launching a student learning interface on OCEL.AI to offer engaging learning experiences to CS+Journalism and Strategic Communication students but also providing infrastructure that can be extended to CS+X programs for a range of other Xs such as business and health care; and 3) sparking critical thinking of data science ethics. To make data science more relevant to minority students, the project will highlight minority experiences in the United States by incorporating critical thinking around digital divides and data science ethics into the curriculum.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
密苏里大学堪萨斯城分校与东密歇根大学、埃塞克斯郡学院和佛罗里达大学合作,提出了开放式协作体验式学习 (OCEL.AI) 项目,这是一个开放知识网络 (OKN),为高等教育教师提供支持在现有的机构结构内向服务不足的人群教授计算机科学(CS)+新闻学和战略传播。人工智能 (AI),特别是深度学习 (DL) 的最新进展提高了多个领域中数据驱动方法和工具的最新成果。为了构建未来的人才生态系统,迫切需要培养一支合格的数据科学劳动力队伍,能够在新闻、健康传播和广告等人类社会的各个领域和方面发挥关键作用。为了满足这一需求,基于云的智能协作工具将为人工智能和数据驱动的研究和教育社区提供 GitHub 和代码存储库为软件工程和开源社区提供的服务。在这个 OKN 中,少数族裔学生将感到有能力并有动力学习数据科学,因为他们可以实时共享、重用、复制、部署、讨论、学习和应用数据和人工智能模型。预计参加这些 CS+新闻和战略传播课程的学生,无论是 CS 专业还是非专业学生,尤其是黑人、女性和西班牙裔学生,学习数据科学的兴趣、自我效能感和动力都会有所提高。该项目以网络改进社区的形式组织,将重点关注三项主要任务:1)在 OCEL.AI 上启动由研究人员实验室开发的在线教师专业发展计划; 2) 在 OCEL.AI 上启动学生学习界面,为 CS+新闻学和战略传播专业的学生提供引人入胜的学习体验,同时还提供可扩展到商业和医疗保健等一系列其他 X 的 CS+X 项目的基础设施; 3)激发数据科学伦理的批判性思维。为了使数据科学与少数族裔学生更相关,该项目将通过将围绕数字鸿沟和数据科学伦理的批判性思维纳入课程来突出美国少数族裔的经历。该奖项反映了 NSF 的法定使命,并通过评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defect prediction using deep learning with Network Portrait Divergence for software evolution
  • DOI:
    10.1007/s10664-022-10147-0
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    V. Walunj;Gharib Gharibi;Rakan Alanazi;Yugyung Lee
  • 通讯作者:
    V. Walunj;Gharib Gharibi;Rakan Alanazi;Yugyung Lee
Facilitating program comprehension with call graph multilevel hierarchical abstractions
  • DOI:
    10.1016/j.jss.2021.110945
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rakan Alanazi;Gharib Gharibi;Yugyung Lee
  • 通讯作者:
    Rakan Alanazi;Gharib Gharibi;Yugyung Lee
Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs
  • DOI:
    10.1016/j.compbiomed.2022.105829
  • 发表时间:
    2022-07-19
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Chandrashekar, Geetha;AlQarni, Saeed;Lee, Yugyung
  • 通讯作者:
    Lee, Yugyung
OpenComm: Open community platform for data integration and privacy preserving for 311 calls
  • DOI:
    10.1016/j.scs.2022.103858
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    11.7
  • 作者:
    Duy H. Ho;Yugyung Lee;Srichakradhar Nagireddy;C. Thota;Brent Never;Ye Wang
  • 通讯作者:
    Duy H. Ho;Yugyung Lee;Srichakradhar Nagireddy;C. Thota;Brent Never;Ye Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yugyung Lee其他文献

MindFlow: Intelligent Workflow for Clinical Trials in Mental Healthcare
MindFlow:精神卫生临床试验的智能工作流程
Automated Human Claustrum Segmentation using Deep Learning Technologies
使用深度学习技术自动进行人体肉状体分割
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Albishri;Syed Jawad Hussain Shah;Anthony Schmiedler;S. Kang;Yugyung Lee
  • 通讯作者:
    Yugyung Lee
OntoDiagram: Automatic Diagram Generation for Congenital Heart Defects in Pediatric Cardiology
OntoDiagram:小儿心脏病学中先天性心脏缺陷的自动图表生成
GO-WORDS: An Entropic Approach to Semantic Decomposition of Gene Ontology Terms
GO-WORDS:基因本体术语语义分解的熵方法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tuanjie Tong;Yugyung Lee;D. Dinakarpandian
  • 通讯作者:
    D. Dinakarpandian
Consumer Insights of COVID-19 Vaccines from Four Cities with Higher Percentages of African Americans to Inform Local Health Campaigns: Topic, Sentiment, and Textual Analyses (Preprint)
非裔美国人比例较高的四个城市的 COVID-19 疫苗消费者洞察,为当地健康运动提供信息:主题、情绪和文本分析(预印本)
  • DOI:
    10.2196/preprints.34931
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ye Wang;Erin Willis;V. K. Yeruva;Yugyung Lee
  • 通讯作者:
    Yugyung Lee

Yugyung Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yugyung Lee', 18)}}的其他基金

REU Site: AI-Empowered Cybersecurity
REU 网站:人工智能赋能的网络安全
  • 批准号:
    2349236
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SCC-PG: Early Community Intervention for Neighborhood Revitalization Using Artificial Intelligence and Emerging Technologies
SCC-PG:利用人工智能和新兴技术进行社区复兴的早期社区干预
  • 批准号:
    1951971
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SGER: ARTISAN - Art Inspired Service Oriented Architecture Design
SGER:ARTISAN - 艺术启发的面向服务的建筑设计
  • 批准号:
    0742666
  • 财政年份:
    2007
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

用户视角下AIGC应用中的AI伦理研究:测量模型、影响机制与应对策略
  • 批准号:
    72371112
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
智能创作时代人工智能生成文本交互式判别与伦理失范纠偏模型研究
  • 批准号:
    72374161
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
隐私数据治理和算法决策伦理视角下消费者对无人驾驶汽车的偏好研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据驱动的网络突发事件快速处置模型与伦理决策方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
组织如何进行人机工作设计?基于效率相关结果和伦理相关结果的多阶段、多方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

CUE Ethics: Collaborative Research: Evaluating Frameworks for Incorporating Computing Across the Curriculum
CUE 伦理:协作研究:评估将计算纳入整个课程的框架
  • 批准号:
    1935061
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CUE Ethics: Collaborative Research: Evaluating Frameworks for Incorporating Computing Across the Curriculum
CUE 伦理:协作研究:评估将计算纳入整个课程的框架
  • 批准号:
    1935099
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CUE Ethics: Collaborative Research: Evaluating Frameworks for Incorporating Computing Across the Curriculum
CUE 伦理:协作研究:评估将计算纳入整个课程的框架
  • 批准号:
    1935113
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CUE Ethics: Collaborative Research: An inclusive and In-Depth Computing Curriculum to help Non-majors Learn Small Patterns to Solve Big Problem
CUE 伦理:协作研究:包容性和深入的计算课程,帮助非专业人士学习小模式解决大问题
  • 批准号:
    1935108
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CUE Ethics: Collaborative Research: An inclusive and In-Depth Computing Curriculum to help Non-majors Learn Small Patterns to Solve Big Problem
CUE 伦理:协作研究:包容性和深入的计算课程,帮助非专业人士学习小模式解决大问题
  • 批准号:
    1935051
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了