Collaborative Research: Knowledge Guided Machine Learning: A Framework for Accelerating Scientific Discovery
协作研究:知识引导机器学习:加速科学发现的框架
基本信息
- 批准号:1934633
- 负责人:
- 金额:$ 34.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The success of machine learning (ML) in many applications where large-scale data is available has led to a growing anticipation of similar accomplishments in scientific disciplines. The use of data science is particularly promising in scientific problems involving processes that are not completely understood. However, a purely data-driven approach to modeling a physical process can be problematic. For example, it can create a complex model that is neither generalizable beyond the data on which it was trained nor physically interpretable. This problem becomes worse when there is not enough training data, which is quite common in science and engineering domains. A machine learning model that is grounded by explainable theories stands a better chance at safeguarding against learning spurious patterns from the data that lead to non-generalizable performance. This is especially important when dealing with problems that are critical and associated with high risks (e.g., extreme weather or collapse of an ecosystem). Hence, neither an ML-only nor a scientific knowledge-only approach can be considered sufficient for knowledge discovery in complex scientific and engineering applications. This project is developing novel techniques to explore the continuum between knowledge-based and ML models, where both scientific knowledge and data are integrated synergistically. Such integrated methods have the potential for accelerating discovery in a range of scientific and engineering disciplines. This project will train interdisciplinary scientists who are well versed in such methods and will disseminate results of the project via peer-reviewed publications, open-source software, and a series of workshops to engage the broader scientific community.This project aims to develop a framework that uses the unique capability of data science models to automatically learn patterns and models from data, without ignoring the treasure of accumulated scientific knowledge. Specifically, the project builds the foundations of knowledge-guided machine learning (KGML) by exploring several ways of bringing scientific knowledge and machine learning models together using pilot applications from four domains: aquatic ecodynamics, climate and weather, hydrology, and translational biology. These pilot applications were selected because they are at tipping points where knowledge-guided machine learning can have a transformative effect. KGML has the potential for providing scientists and engineers with new insights into their domains of interest and will require the development of innovative new machine learning approaches and architectures that can incorporate scientific principles. Scientific knowledge, KGML methods, and software developed in this project could potentially be extended to a wide range of scientific applications where mechanistic (also known as process-based) models are used.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)在许多可用数据的应用中的成功导致对科学学科的类似成就的预期日益增长。在涉及未完全理解的过程的科学问题中,数据科学的使用尤其有希望。但是,建模物理过程的纯粹数据驱动方法可能是有问题的。例如,它可以创建一个复杂的模型,该模型既不是训练它的数据,也不是在物理上可以解释的数据之外。当没有足够的培训数据时,这个问题就会变得更糟,这在科学和工程领域很普遍。 以可解释的理论为基础的机器学习模型具有更好的机会来保护从导致不可替代性能的数据中学习虚假模式。当处理至关重要且与高风险有关的问题(例如,生态系统的极端天气或崩溃)时,这一点尤其重要。 因此,在复杂的科学和工程应用中,不可被视为仅限ML或仅科学知识的方法。该项目正在开发新型技术,以探索基于知识的模型和ML模型之间的连续性,在这些模型中,科学知识和数据均协同整合。这种综合方法具有在一系列科学和工程学科中加速发现的潜力。该项目将培训精通这种方法的跨学科科学家,并将通过同行评审的出版物,开源软件和一系列研讨会来传播该项目的结果,以吸引更广泛的科学社区。该项目旨在开发一个框架,以开发一个具有数据科学模型的框架,以自动从数据和模型中学习模型,而无需忽略数据的知识,该项目累积了累积的科学知识。具体而言,该项目通过使用来自四个领域的试验应用将科学知识和机器学习模型探索将科学知识和机器学习模型聚集在一起的几种方法来建立知识引导的机器学习(KGML)的基础:水生态动力学,气候和天气,水文学和转化生物学。选择了这些试点应用,因为它们处于知识引导的机器学习可以产生变革性效果的临界点。 KGML有可能为科学家和工程师提供对其感兴趣领域的新见解,并需要开发创新的新机器学习方法和可以纳入科学原则的建筑。该项目中开发的科学知识,KGML方法和软件可能会扩展到广泛的科学应用,其中使用了机械(也称为基于过程)模型的机械应用程序(也称为基于过程)模型。该项目是国家科学基金会(National Science Foundation)利用数据革命(HDR)的大创意活动的一部分。该奖项是NSF的法定任务,反映了NSF的法规审查,并通过评估范围来进行评估,并具有范围的范围。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling dataset: Long-term Change in Metabolism Phenology across North-Temperate Lakes, Wisconsin, USA 1979-2019
建模数据集:1979-2019 年美国威斯康星州北温带湖泊代谢物候学的长期变化
- DOI:10.6073/pasta/af991c26bace5af8d4b3bb66d7b18af7
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ladwig, Robert;Appling, Alison P.;Delany, Austin;Dugan, Hilary A.;Gao, Qiantong;Lottig, Noah;Stachelek, Joseph;Hanson, Paul C.
- 通讯作者:Hanson, Paul C.
Predicting lake surface water phosphorus dynamics using process-guided machine learning
- DOI:10.1016/j.ecolmodel.2020.109136
- 发表时间:2020-08-15
- 期刊:
- 影响因子:3.1
- 作者:Hanson, Paul C.;Stillman, Aviah B.;Kumar, Vipin
- 通讯作者:Kumar, Vipin
Process‐Guided Deep Learning Predictions of Lake Water Temperature
- DOI:10.1029/2019wr024922
- 发表时间:2019-11
- 期刊:
- 影响因子:5.4
- 作者:J. Read;X. Jia;J. Willard;A. Appling;Jacob Aaron Zwart;S. Oliver;A. Karpatne;Gretchen J. A. Hansen;P. Hanson;William Watkins;M. Steinbach;Vipin Kumar
- 通讯作者:J. Read;X. Jia;J. Willard;A. Appling;Jacob Aaron Zwart;S. Oliver;A. Karpatne;Gretchen J. A. Hansen;P. Hanson;William Watkins;M. Steinbach;Vipin Kumar
Data for Lake Mendota Phosphorus Cycling Model
门多塔湖磷循环模型的数据
- DOI:10.6073/pasta/36d0ee7bf67d9dabade404c92be73917
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Hanson, Paul C;Stillman, Aviah B
- 通讯作者:Stillman, Aviah B
Modeled Organic Carbon, Dissolved Oxygen, and Secchi for six Wisconsin Lakes, 1995-2014
1995-2014 年威斯康星州六个湖泊的有机碳、溶解氧和 Secchi 模型
- DOI:10.6073/pasta/1b5b947999aa2f9e0e95c91782b36ee9
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Delany, Austin
- 通讯作者:Delany, Austin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Hanson其他文献
The Mediating Role of Expected Grade on Gendered Teaching Style Biases in Teacher Evaluations
期望成绩对教师评价中性别教学风格偏差的中介作用
- DOI:
10.2466/03.11.it.1.1 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Niwako Yamawaki;Adriane Queiroz;Paul Hanson - 通讯作者:
Paul Hanson
Solid-phase synthesis of metal-complex containing peptides
- DOI:
10.1016/j.tet.2007.03.147 - 发表时间:
2007-06-04 - 期刊:
- 影响因子:
- 作者:
Georg Dirscherl;Robert Knape;Paul Hanson;Burkhard König - 通讯作者:
Burkhard König
Spectral measure of color variation of black - orange - black (BOB) pattern in small parasitic wasps (Hymenoptera: Scelionidae), a statistical approach
小寄生蜂(膜翅目:Scelionidae)黑-橙-黑(BOB)图案颜色变化的光谱测量,一种统计方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rebeca Mora;M. Hernández;Marcela Alfaro;Esteban Avendaño;Paul Hanson - 通讯作者:
Paul Hanson
A survey of homopteran species (Auchenorrhyncha) from coffee shrubs and poró and laurel trees in shaded coffee plantations, in Turrialba, Costa Rica.
对哥斯达黎加图里亚尔巴遮荫咖啡种植园的咖啡灌木、波罗树和月桂树中的同翅目物种(Aucheno rhyncha)进行的调查。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0.6
- 作者:
Liliana Rojas;Carolina Godoy;Paul Hanson;L. Hilje - 通讯作者:
L. Hilje
Effects of experimental host‐plant switching on the life cycle of a fern spore‐feeding micromoth of the genus Stathmopoda
实验寄主植物转换对以蕨类孢子为食的小蛾属小蛾生命周期的影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.9
- 作者:
Luis Javier Fuentes;Paul Hanson;K. Mehltreter;C. Díaz‐Castelazo;V. Hernández‐Ortiz - 通讯作者:
V. Hernández‐Ortiz
Paul Hanson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Hanson', 18)}}的其他基金
Collaborative Research: MRA: Advancing process understanding of lake water quality to macrosystem scales with knowledge-guided machine learning
合作研究:MRA:通过知识引导的机器学习将湖泊水质的过程理解推进到宏观系统尺度
- 批准号:
2213549 - 财政年份:2022
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Collaborative Research: The Environmental Data Initiative - long-term availability of research data
协作研究:环境数据倡议 - 研究数据的长期可用性
- 批准号:
2223103 - 财政年份:2022
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Collaborative Research: Environmental Data Initiative: Sustaining the Legacy of Scientific Data
合作研究:环境数据倡议:维持科学数据的遗产
- 批准号:
1931174 - 财政年份:2019
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Collaborative Research: Consequences of changing oxygen availability for carbon cycling in freshwater ecosystems
合作研究:改变淡水生态系统中碳循环的氧气可用性的后果
- 批准号:
1753657 - 财政年份:2018
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Collaborative Research: Building Analytical, Synthesis, and Human Network Skills Needed for Macrosystem Science: a Next Generation Graduate Student Training Model Based on GLEON
协作研究:构建宏观系统科学所需的分析、综合和人际网络技能:基于 GLEON 的下一代研究生培养模型
- 批准号:
1137353 - 财政年份:2012
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
REU Site: Collaborative Research: Dune Undergraduate Geomorphology and Geochronology (DUGG) Project in Wisconsin
REU 网站:合作研究:威斯康星州沙丘本科地貌学和地质年代学 (DUGG) 项目
- 批准号:
0850525 - 财政年份:2009
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Collaborative Research: Linking loess landforms and eolian processes
合作研究:黄土地貌与风成过程的联系
- 批准号:
0921838 - 财政年份:2009
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
CDI-Type II: Collaborative Research: New knowledge from the Global Lake Ecological Observatory Network (GLEON)
CDI-Type II:协作研究:来自全球湖泊生态观测站网络(GLEON)的新知识
- 批准号:
0941510 - 财政年份:2009
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Collaborative Research: The Significance of the Loess Mantle in Midwestern Soil Catena Evolution
合作研究:黄土幔在中西部土壤链演化中的意义
- 批准号:
0751911 - 财政年份:2008
- 资助金额:
$ 34.19万 - 项目类别:
Continuing Grant
RCN: Advancing Lake Ecology by Building an International Community to Exploit Innovations in Sensor Network Technology
RCN:通过建立国际社区利用传感器网络技术创新来推进湖泊生态
- 批准号:
0639229 - 财政年份:2007
- 资助金额:
$ 34.19万 - 项目类别:
Continuing Grant
相似国自然基金
基于多模态人机交互的协作式知识生成与演化机制研究
- 批准号:62207009
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于多模态人机交互的协作式知识生成与演化机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协作网络环境下知识扩散及博弈衍生行为研究:基于资源约束视角
- 批准号:72171008
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
在线知识社区中的人机协作模式及对知识社会建构绩效影响研究
- 批准号:
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:面上项目
大学生在线协作式知识创新研究:实时学习分析工具的开发及应用
- 批准号:61907038
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Conference: Strategically Engaging Private Institutions at Building Research Infrastructure, Networks and Knowledge (BRINK) in the Emergence of Research
合作研究:会议:在研究的兴起中战略性地让私营机构参与建设研究基础设施、网络和知识(BRINK)
- 批准号:
2324590 - 财政年份:2023
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
NNA Research: Collaborative Research: Towards resilient water infrastructure in Alaska Native communities through knowledge co-production
NNA 研究:合作研究:通过知识共同生产为阿拉斯加原住民社区打造具有复原力的水基础设施
- 批准号:
2220518 - 财政年份:2023
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
NNA Research: Collaborative Research: Towards resilient water infrastructure in Alaska Native communities through knowledge co-production
NNA 研究:合作研究:通过知识共同生产为阿拉斯加原住民社区打造具有复原力的水基础设施
- 批准号:
2220516 - 财政年份:2023
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
NNA Research: Collaborative Research: Towards resilient water infrastructure in Alaska Native communities through knowledge co-production
NNA 研究:合作研究:通过知识共同生产为阿拉斯加原住民社区打造具有复原力的水基础设施
- 批准号:
2220517 - 财政年份:2023
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Bridging Research and Visualization Design Practice via a Sustainable Knowledge Platform
合作研究:HCC:小型:通过可持续知识平台桥接研究和可视化设计实践
- 批准号:
2147044 - 财政年份:2023
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant