Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting

合作研究:基于物理的机器学习用于次季节气候预测

基本信息

  • 批准号:
    1934634
  • 负责人:
  • 金额:
    $ 38.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

While the past few decades have seen major advances in weather forecasting on time scales of days to about a week, making high quality forecasts of key climate variables such as temperature and precipitation on sub-seasonal time scales, the time range between 2 weeks and 2 months, continues to challenge operational forecasters. Skillful climate forecasts on sub-seasonal time scales would have immense societal value in areas such as agricultural productivity, hydrology and water resource management, transportation and aviation systems, and emergency planning for extreme events such as Atlantic hurricanes and midwestern tornadoes. In spite of the scientific, societal, and financial importance of sub-seasonal climate forecasting, progress on the problem has been limited. The project has initiated a systematic investigation of physics-based machine learning with specific focus on advancing sub-seasonal climate forecasting. In particular, this project is developing novel machine learning (ML) approaches for sub-seasonal forecasting by leveraging both limited observational data as well as vast amounts of dynamical climate model output data. Further, the project is focusing on improving the dynamical climate models themselves based on ML with specific emphasis on learning model parameterizations suitable for accurate sub-seasonal forecasting. The principles, models, and methodology for physics-based machine learning being developed in the project will benefit other scientific domains which rely on dynamical models. The project is establishing a public repository of a benchmark dataset for sub-seasonal forecasting to engage the wider data science community and accelerate progress in this critical area. The project is training a new generation of interdisciplinary scientists who can cross the traditional boundaries between computer science, statistics, and climate science.The project works with two key sources of data for sub-seasonal forecasting: limited amounts of observational data and vast amounts of output data from dynamical model simulations, which capture physical laws and dynamics based on large coupled systems of partial differential equations (PDEs). The project is investigating the following central question: what is the best way to learn simultaneously from limited observational data and imperfect dynamical models for improving sub-seasonal forecasts? The project is building a framework for physics-based machine that has two inter-linked components: (1) deduction, in which ML models are trained on dynamical model outputs as well as limited observations, and (2) induction, in which ML models are used to improve dynamical models. Across the two components, the project is making fundamental advances in learning representations, functional gradient descent, transfer learning, derivative-free optimization and multi-armed bandits, Monte Carlo tree search, and block coordinate descent. On the climate side, the project is building an idealized dynamical climate model and doing an in depth investigation on learning suitable parameterizations for the dynamical model with ML methods to improve forecast accuracy in the sub-seasonal time scales. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管过去几十年来,天气尺度的天气预测在天气尺度上达到了大约一周的重大进展,从而对关键气候变量进行高质量预测,例如温度和季节性时间尺度上的降水量,但在2周和2个月之间的时间范围,继续挑战运营预报员。在农业生产力,水文学和水资源管理,运输和航空系统等领域,对亚地区时间尺度的熟练气候预测将具有巨大的社会价值,以及大西洋飓风和中西部龙卷风等极端活动的紧急计划。尽管下季节气候预测的科学,社会和财务重要性,但问题的进展仍然有限。该项目已经对基于物理的机器学习进行了系统的研究,特别着眼于推进季节性气候预测。特别是,该项目通过利用有限的观察数据以及大量动态气候模型输出数据来开发新的机器学习方法(ML)方法,以进行下季预测。此外,该项目将重点放在基于ML的动态气候模型本身上,并特别强调学习模型参数化,适合于准确的亚季节预测。项目中开发基于物理的机器学习的原理,模型和方法将使其他依赖动态模型的科学领域受益。该项目正在建立一个基准数据集的公共存储库,以进行亚季节预测,以吸引更广泛的数据科学界并加速该关键领域的进展。该项目正在培训新一代的跨学科科学家,他们可以跨越计算机科学,统计和气候科学之间的传统界限。该项目可与两个关键的数据源一起使用,用于次级季节预测的两个关键来源:有限的观测数据和大量的动态模型中的大量输出数据,这些模型仿真,捕获基于大型物理偏差的系统元素的系统(pdepledepations aptial difectialsepations)(pdeplessials aptial dientals)。该项目正在研究以下中心问题:从有限的观察数据和不完美的动力学模型中同时学习以改善次级预测的最佳方法是什么?该项目正在为基于物理的机器构建一个框架,该机器具有两个相互关联的组件:(1)推论,其中ML模型在动态模型输出以及有限的观察结果上进行培训,以及(2)使用ML模型来改善动力学模型。在这两个组件中,该项目在学习表示,功能梯度下降,转移学习,无衍生化的优化和多臂匪徒,蒙特卡洛树搜索和块坐标下降方面取得了根本的进步。在气候方面,该项目正在建立一个理想化的动力学气候模型,并对使用ML方法对动态模型进行合适的参数化进行深入研究,以提高亚季节时间尺度的预测准确性。该项目是国家科学基金会利用数据革命(HDR)的大创意活动的一部分。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sub-Seasonal Climate Forecasting via Machine Learning: Challenges, Analysis, and Advances
  • DOI:
    10.1609/aaai.v35i1.16090
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sijie He;Xinyan Li;T. DelSole;Pradeep Ravikumar;A. Banerjee
  • 通讯作者:
    Sijie He;Xinyan Li;T. DelSole;Pradeep Ravikumar;A. Banerjee
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arindam Banerjee其他文献

Technology acceptance model and customer engagement: mediating role of customer satisfaction
技术接受模型和客户参与:客户满意度的中介作用
AmbientFlow: Invertible generative models from incomplete, noisy measurements
AmbientFlow:来自不完整、噪声测量的可逆生成模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Varun A. Kelkar;Rucha Deshpande;Arindam Banerjee;M. Anastasio
  • 通讯作者:
    M. Anastasio
Mixture Modeling
混合建模
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Johannes Fürnkranz;Philip K. Chan;Susan Craw;Claude Sammut;W. Uther;A. Ratnaparkhi;Xin Jin;Jiawei Han;Ying Yang;K. Morik;M. Dorigo;M. Birattari;T. Stützle;P. Brazdil;R. Vilalta;C. Giraud;Carlos Soares;J. Rissanen;R. Baxter;I. Bruha;Geoffrey I. Webb;Luís Torgo;Arindam Banerjee;Hanhuai Shan;Soumya Ray;Prasad Tadepalli;Y. Shoham;Rob Powers;Stephen Scott;H. Blockeel;Luc De Raedt
  • 通讯作者:
    Luc De Raedt
Bayesian Clustering Ensemble
贝叶斯聚类集成
Data-driven solutions
数据驱动的解决方案
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ganguly;E. Kodra;Udit Bhatia;M. Warner;Kate Duffy;Arindam Banerjee;S. Ganguly
  • 通讯作者:
    S. Ganguly

Arindam Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arindam Banerjee', 18)}}的其他基金

NRT - Stakeholder Engaged Equitable Decarbonized Energy Futures
NRT - 利益相关者参与的公平脱碳能源期货
  • 批准号:
    2244162
  • 财政年份:
    2023
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
  • 批准号:
    2130835
  • 财政年份:
    2021
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Continuing Grant
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
  • 批准号:
    2131335
  • 财政年份:
    2021
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Continuing Grant
PFI-TT: Advancing the Technology Readiness of Pylon Fairings for Tidal Turbines
PFI-TT:推进潮汐涡轮机塔架整流罩的技术准备
  • 批准号:
    1919184
  • 财政年份:
    2019
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
  • 批准号:
    1908104
  • 财政年份:
    2019
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Continuing Grant
Towards an improved understanding of tidal turbine dynamics in a turbulent marine environment
提高对湍流海洋环境中潮汐涡轮机动力学的理解
  • 批准号:
    1706358
  • 财政年份:
    2017
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
  • 批准号:
    1563950
  • 财政年份:
    2016
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Continuing Grant
CAREER: Transition to Turbulence and Mixing for Rayleigh Taylor Instability with Acceleration Reversal
职业生涯:加速反转的瑞利泰勒不稳定性过渡到湍流和混合
  • 批准号:
    1453056
  • 财政年份:
    2015
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
  • 批准号:
    1447566
  • 财政年份:
    2014
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Learning Relations between Extreme Weather Events and Planet-Wide Environmental Trends
EAGER:合作研究:学习极端天气事件与全球环境趋势之间的关系
  • 批准号:
    1451986
  • 财政年份:
    2014
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant

相似国自然基金

基于人—信息—物理系统的双臂协作机器人安全交互方法研究
  • 批准号:
    52375031
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向物理人机交互的机器人主动安全协作控制方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
    52205528
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向物理人机交互的机器人主动安全协作控制方法研究
  • 批准号:
    62203186
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336368
  • 财政年份:
    2024
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336367
  • 财政年份:
    2024
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了