Cohomological periods and high rank lattices

上同调周期和高阶格

基本信息

  • 批准号:
    1931087
  • 负责人:
  • 金额:
    $ 20.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

As was realized by Descartes, the solution of algebraic equations can be realized geometrically. This observation was the start of a rich interaction between algebra and geometry. This project will study two topics in number theory. The first concerns the shape of arithmetic manifolds -- i.e., certain geometries defined by their number theoretic symmetries. The PI has conjectured the existence of new structures that govern their shape (mathematically speaking their topology), which he will investigate in more detail. The second topic relates to lattices of high dimension. These are a topic of interest in modern cryptography; on the other hand, a satisfactory mathematical theory of them is not yet available, and this project aims to develop such a theory. More specifically, the PI has formulated a conjecture that specifies the values of "periods" of arithmetic locally symmetric spaces -- i.e., the numbers obtained by pairing homology classes with normalized differential forms. This conjecture is interesting because it suggests a relationship between these homology groups, and certain motivic cohomology groups. The PI will study this conjecture and attempt to give evidence for it. Concerning lattices, the PI will study in particular the following questions: What is the diameter of the space of n-dimensional lattices, how do the short vectors in a typical n-dimensional lattice behave, and why does the LLL lattice reduction algorithm behave so well? A basic tool will be the analysis of automorphic forms on GL(n) for large n, and the PI will also study related questions about automorphic forms in the high-dimensional limit.
正如笛卡尔所认识到的,代数方程的解可以通过几何方式实现。这一观察是代数和几何之间丰富相互作用的开始。该项目将研究数论中的两个主题。第一个涉及算术流形的形状——即由数论对称性定义的某些几何形状。 PI 推测存在控制其形状(从数学上讲是其拓扑结构)的新结构,他将对此进行更详细的研究。第二个主题涉及高维晶格。这些是现代密码学感兴趣的话题;另一方面,目前还没有令人满意的数学理论,本项目旨在发展这样的理论。更具体地说,PI 制定了一个猜想,指定算术局部对称空间的“周期”值,即通过将同源类与归一化微分形式配对而获得的数字。这个猜想很有趣,因为它暗示了这些同调群和某些动机上同调群之间的关系。 PI 将研究这个猜想并尝试为其提供证据。关于晶格,PI将特别研究以下问题:n维晶格的空间直径是多少,典型n维晶格中的短向量如何表现,以及为什么LLL晶格约简算法表现如此出色地?一个基本工具是对大n的GL(n)上的自同构形式进行分析,PI还将研究高维极限下自同构形式的相关问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akshay Venkatesh其他文献

Beyond Endoscopy and special forms on GL(2)
超越内窥镜检查和 GL(2) 上的特殊表格
  • DOI:
    10.1515/crll.2004.2004.577.23
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
SPECTRAL THEORY OF AUTOMORPHIC FORMS: A VERY BRIEF INTRODUCTION
自同构形式的谱论:非常简短的介绍
  • DOI:
    10.1007/978-1-4020-5404-4_12
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
Power-Check: An Energy-Efficient Checkpointing Framework for HPC Clusters
Power-Check:HPC 集群的节能检查点框架
The distribution of periodic torus orbits on homogeneous spaces
均匀空间上周期环面轨道的分布
  • DOI:
    10.1215/00127094-2009-023
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    M. Einsiedler;E. Lindenstrauss;P. Michel;Akshay Venkatesh
  • 通讯作者:
    Akshay Venkatesh
On the dimension of the space of cusp forms associated to 2-dimensional complex Galois representations
关于与二维复伽罗瓦表示相关的尖点形式的空间维度

Akshay Venkatesh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akshay Venkatesh', 18)}}的其他基金

Conference: Visions in Arithmetic and Beyond
会议:算术及其他领域的愿景
  • 批准号:
    2402436
  • 财政年份:
    2024
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Standard Grant
Research in Mathematics
数学研究
  • 批准号:
    1926686
  • 财政年份:
    2020
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mathematical Sciences Institutes Diversity Initiative
合作研究:数学科学研究所多样性倡议
  • 批准号:
    1936539
  • 财政年份:
    2019
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Standard Grant
Cohomological periods and high rank lattices
上同调周期和高阶格
  • 批准号:
    1401622
  • 财政年份:
    2014
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Proposal: Periods of Automorphic Forms and Applications to L-Functions
FRG:协作提案:自同构形式的周期及其在 L 函数中的应用
  • 批准号:
    1065807
  • 财政年份:
    2011
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Arithmetic and equidistribution on homogeneous spaces
FRG:协作研究:齐次空间上的算术和等分布
  • 批准号:
    0903110
  • 财政年份:
    2008
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Standard Grant
Arthur's Conjecture, Spectural Theory, and Analytic Number Theory in Higher Rank
亚瑟猜想、谱论和高阶解析数论
  • 批准号:
    0813445
  • 财政年份:
    2007
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Arithmetic and equidistribution on homogeneous spaces
FRG:协作研究:齐次空间上的算术和等分布
  • 批准号:
    0554365
  • 财政年份:
    2006
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Standard Grant
Arthur's Conjecture, Spectural Theory, and Analytic Number Theory in Higher Rank
亚瑟猜想、谱论和高阶解析数论
  • 批准号:
    0245606
  • 财政年份:
    2003
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Continuing Grant

相似国自然基金

白垩纪时期亚洲沙漠带形成及其南北漂移机制的模拟研究
  • 批准号:
    42372120
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
中国“垺氏藻”时期淡水红藻的分类及分子系统发育研究
  • 批准号:
    32300175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不同生育时期非对称增温对双季稻生长发育的影响研究
  • 批准号:
    32372221
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
蛇纹石化场景下的同手性现象起源及前生命时期有机小分子组装研究
  • 批准号:
    42372051
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
神农架宋洛生物群:揭示“雪球地球”时期生物面貌的特异埋藏化石库
  • 批准号:
    42372024
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
  • 批准号:
    NE/V006630/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
  • 批准号:
    NE/V007289/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
  • 批准号:
    NE/V006509/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
  • 批准号:
    NE/V006517/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Research Grant
A Study of Iconography on Christianity in the Late Meiji and Taisho Periods.
明治末大正时期基督教图像学研究。
  • 批准号:
    23KJ1545
  • 财政年份:
    2023
  • 资助金额:
    $ 20.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了