CHS: Small: Efficient Simulation of Thin Materials With Discrete Tension Field Theory

CHS:小型:利用离散张力场理论对薄材料进行有效模拟

基本信息

  • 批准号:
    1910274
  • 负责人:
  • 金额:
    $ 49.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Thin shell simulations are a foundational tool in scientific computing. They are used to analyze the behavior of biological structures such as vesicles and cell membranes, to simulate deformation of fabrics and composites, to predict scarring and wrinkling of skin in surgery training and visualization tools, and to analyze buckling and crumpling of structural elements in buildings and vehicles. This research will establish new algorithms for simulating the physical behavior of thin curved materials such as fabric, paper, or sheet metal, with unprecedented efficiency, whereas such simulations currently are notoriously difficult and computationally expensive because thin objects like a sheet of paper or cloth bend far more readily than they stretch and will prefer to buckle and crumple in geometrically complex ways rather than compress. Moreover, this complexity is unpredictable and chaotic; the exact pattern of wrinkles can vary wildly even for identical objects under identical loads. Finally, predicting how a thin object behaves under frictional contact with itself and the environment is especially challenging; due to the thin geometry, expensive collision detection and response algorithms must be used to ensure that thin parts do not tunnel through each other, no matter how quickly or forcefully they are pushed together.To make thin material simulations more practical for use in engineering, design, and robotics applications, where performance is critical, this project will develop a more efficient, simplified model for how to simulate deformation of thin materials. The key insight, borrowed from the tension field approach in continuum mechanics, is that the behavior of thin objects is dominated by lines of tension through the material, while fine-scale wrinkles induced by compression and bending are extraordinarily expensive to resolve yet contribute little to the object's coarse-scale shape or mechanical behavior. By exploiting this insight and focusing computational effort on tracking and simulating the lines of tension, the performance of thin shell simulations can be substantially improved without sacrificing accuracy. Put another way, in regions of pure tension the elastic membrane energy is convex and standard shell finite element methods perform well. Whereas in regions of pure compression, or mixed tension and compression, buckling occurs since there is a scale separation between the resistance of thin materials to compression and to bending, and the post-buckled state of the shell contains many highly nonlinear, complex wrinkles and creases, yet the coarse shape of the shell can nevertheless be approximated by ignoring the wrinkles and treating the shell as a collection of 1D curves aligned to the tensile stress directions on the shell. The detailed work plan will comprise work on tension-dominated surfaces, mixed-stress surfaces, and contact and friction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
薄壳模拟是科学计算的基础工具。它们用于分析囊泡和细胞膜等生物结构的行为,模拟织物和复合材料的变形,在手术训练和可视化工具中预测皮肤的疤痕和皱纹,以及分析建筑物结构元件的屈曲和皱折和车辆。这项研究将建立新的算法,以前所未有的效率模拟薄弯曲材料(如织物、纸张或金属板)的物理行为,而目前这种模拟非常困难且计算成本高昂,因为像一张纸或布这样的薄物体会弯曲它们比拉伸更容易,并且更喜欢以复杂的几何方式弯曲和压皱,而不是压缩。 而且,这种复杂性是不可预测的、混乱的;即使对于相同负载下的相同物体,皱纹的确切模式也可能有很大差异。最后,预测薄物体在与自身和环境发生摩擦接触时的行为尤其具有挑战性;由于薄的几何形状,必须使用昂贵的碰撞检测和响应算法来确保薄部件不会相互穿透,无论它们被多快或多强力地推到一起。为了使薄材料模拟在工程中更加实用,设计和机器人应用(其中性能至关重要),该项目将开发一个更有效、更简化的模型来模拟薄材料的变形。 借用连续介质力学中的张力场方法的关键见解是,薄物体的行为由穿过材料的张力线主导,而压缩和弯曲引起的细尺度皱纹的解决成本极高,但对解决问题贡献甚微。物体的粗略形状或机械行为。 通过利用这种洞察力并将计算工作集中于跟踪和模拟张力线,可以在不牺牲精度的情况下显着提高薄壳模拟的性能。 换句话说,在纯张力区域,弹性膜能量是凸的,标准壳有限元方法表现良好。 而在纯压缩或混合拉伸和压缩的区域中,会发生屈曲,因为薄材料的抗压缩性和抗弯曲性之间存在尺度分离,并且壳体的屈曲后状态包含许多高度非线性、复杂的皱纹和然而,通过忽略皱纹并将壳体视为与壳体上的拉应力方向对齐的一维曲线的集合,仍然可以近似壳体的粗略形状。 详细的工作计划将包括张力主导表面、混合应力表面以及接触和摩擦方面的工作。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Octahedral Frames for Feature-Aligned Cross Fields
用于特征对齐交叉场的八面体框架
  • DOI:
    10.1145/3374209
  • 发表时间:
    2020-04-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Zhang;Josh Vekhter;E. Chien;D. Bommes;E. Vouga;J. Solomon
  • 通讯作者:
    J. Solomon
Fine Wrinkling on Coarsely Meshed Thin Shells
粗网状薄壳上的细皱纹
  • DOI:
    10.1145/3462758
  • 发表时间:
    2021-08-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhen Chen;Hsiao;D. Kaufman;M. Skouras;E. Vouga
  • 通讯作者:
    E. Vouga
Computational Design of Self‐Actuated Surfaces by Printing Plastic Ribbons on Stretched Fabric
在拉伸织物上印刷塑料带的自驱动表面的计算设计
  • DOI:
    10.1111/cgf.14489
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    David Jourdan;M. Skouras;E. Vouga;A. Bousseau
  • 通讯作者:
    A. Bousseau
C-Space tunnel discovery for puzzle path planning
用于谜题路径规划的 C 空间隧道发现
  • DOI:
    10.1145/3386569.3392468
  • 发表时间:
    2020-07-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinya Zhang;Robert Belfer;P. Kry;E. Vouga
  • 通讯作者:
    E. Vouga
Printing-on-Fabric Meta-Material for Self-Shaping Architectural Models
用于自成型建筑模型的织物超材料打印
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Vouga其他文献

Paul Vouga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Vouga', 18)}}的其他基金

Collaborative Research: Dynamics of Snapping of Tethers
合作研究:系绳折断动力学
  • 批准号:
    2310666
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Co-Design of Shape and Fabrication Plans for Direct-Ink Write Printing Through Predictive Simulation
合作研究:HCC:中:通过预测模拟共同设计直接墨水书写打印的形状和制造计划
  • 批准号:
    2212048
  • 财政年份:
    2022
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1304211
  • 财政年份:
    2013
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于亲和超滤高效筛选苗药榜看雾中治疗类风湿性关节炎的小分子TNF-α抑制剂
  • 批准号:
    82360834
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
海洋节菱孢菌中靶向RORγ-DLL3信号轴抗小细胞肺癌的Arthpyrone类吡啶酮生物碱的高效发掘及作用机制研究
  • 批准号:
    42376124
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
小分子高效诱导人成纤维细胞重编程为功能肝细胞的研究
  • 批准号:
    32300610
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
太阳光致异构的偶氮小分子的开发及其在高效太阳能储热中的应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高效纳米酶的细胞外囊泡内小分子代谢物的即时检测研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
  • 批准号:
    2341359
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
  • 批准号:
    2349802
  • 财政年份:
    2023
  • 资助金额:
    $ 49.41万
  • 项目类别:
    Standard Grant
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
  • 批准号:
    10584324
  • 财政年份:
    2023
  • 资助金额:
    $ 49.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了