SpecEES: DISCOVER: Device Identification for Spectrum-optimization using COnVolutional nEural netwoRks
SpecEES:DISCOVER:使用卷积神经网络进行频谱优化的设备识别
基本信息
- 批准号:1923789
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this project, called DISCOVER, is to harness the power of deep machine learning (ML) algorithms to communicate wirelessly with high spectral efficiency and low power consumption. The techniques will result in advanced networking protocols that consume minimal resources by securely identifying the devices that are active in the surrounding environment without (or with minimal) control signaling. Apart from learning channel usage and device activity, DISCOVER will allow for rapidly deploying these algorithms in hardware, so that real-time inferences can be made. Thus, DISCOVER is directly aligned with the US President's executive order from February 2019 'Maintaining American Leadership in Artificial Intelligence' that seeks to prioritize research and development of America's artificial intelligence (AI) capabilities. DISCOVER aims to bring together industry, academia and government stakeholders through collaborative workshops towards identifying high priority challenges, limitations of available data sources, and identify a list of candidate machine learning solutions that will shape the next generation of wireless technologies. The open source release of signal datasets and simulation code will foster new interactions of wireless researchers with core machine learning domain experts.DISCOVER has three goals for optimizing spectrum utilization with overlapping interests of either energy saving or resilience to identity spoofing through the use of deep learning architectures: 1. It aims to explore deep convolutional neural network (CNN) architectures that will allow highly accurate device classification and demonstrate how to eliminate identifier-related protocol fields. This approach of reducing packet headers will achieve quantifiable spectrum utilization improvements, especially for large-scale deployment of the Internet of Things (IoT). 2. It aims to demonstrate the first learning-in-the-loop radio frequency (RF) system where spectrum-driven decisions are enabled through real-time deep learning algorithms implemented directly on the device hardware. This will result in significant energy savings for embedded IoT devices. 3. The emulation engine developed in the project will empower users to create custom-signals to train ML algorithms. Furthermore, it will create community RF signal datasets that will ensure means of standardized validation for the larger research community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究目标称为Discover,是利用深度机器学习(ML)算法的力量,以高光谱效率和低功耗进行无线通信。这些技术将导致高级网络协议,通过安全地识别在没有(或使用最少)控制信号的周围环境中活跃的设备,从而消耗最小的资源。除了学习渠道使用率和设备活动外,Discover还可以快速在硬件中部署这些算法,以便进行实时推断。因此,Discover与2019年2月的美国总统行政命令直接保持一致,该命令旨在优先考虑美国人工智能(AI)能力的研究和发展。 Discover旨在通过协作研讨会将行业,学术界和政府利益相关者汇集在一起,以确定高度优先挑战,可用数据源的局限性,并确定将塑造下一代无线技术的候选机器学习解决方案列表。信号数据集和仿真代码的开源发布将促进无线研究人员与核心机器学习域专家的新相互作用。确保有三个目标,可以通过三个目标来优化频谱利用,并重叠节能或对身份的弹性对身份欺骗的兴趣,以欺骗深度学习体系结构:1。允许深度卷积网络(CORTISTIRE IMPERTITY ERNECTIRATION ERNECTIRATION ERNECTIRATIES)。标识符相关协议字段。这种减少数据包标头的方法将实现可量化的光谱利用率改进,尤其是用于大规模部署物联网(IoT)。 2。它的目的是展示第一个在环射频(RF)系统中,该系统通过直接在设备硬件上实现的实时深度学习算法来实现频谱驱动的决策。这将为嵌入式IoT设备节省大量能源。 3。项目中开发的仿真引擎将使用户能够创建自定义信号来培训ML算法。此外,它将创建社区RF信号数据集,以确保对较大的研究社区的标准化验证手段。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估的评估来获得支持的。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multimodality in mmWave MIMO Beam Selection Using Deep Learning: Datasets and Challenges
使用深度学习的毫米波 MIMO 波束选择中的多模态:数据集和挑战
- DOI:10.1109/mcom.002.2200028
- 发表时间:2022
- 期刊:
- 影响因子:11.2
- 作者:Gu, Jerry;Salehi, Batool;Roy, Debashri;Chowdhury, Kaushik R.
- 通讯作者:Chowdhury, Kaushik R.
PRONTO: Preamble Overhead Reduction With Neural Networks for Coarse Synchronization
- DOI:10.1109/twc.2023.3256961
- 发表时间:2021-12
- 期刊:
- 影响因子:10.4
- 作者:N. Soltani;Debashri Roy;K. Chowdhury
- 通讯作者:N. Soltani;Debashri Roy;K. Chowdhury
NN-key: A Neural Network-Based Secret Key for Demapping OFDM Symbols
NN-key:基于神经网络的 OFDM 符号解映射密钥
- DOI:10.1109/ccnc49033.2022.9700617
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Soltani, Nasim;Li, Yanyu;Erdogmus, Deniz;Wang, Yanzhi;Chowdhury, Kaushik
- 通讯作者:Chowdhury, Kaushik
Going beyond RF: A survey on how AI-enabled multimodal beamforming will shape the NextG standard
- DOI:10.1016/j.comnet.2023.109729
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Debashri Roy;Batool Salehi;Stella Banou;Subhramoy Mohanti;Guillem Reus Muns;M. Belgiovine;P. Ganesh-P.-Gane
- 通讯作者:Debashri Roy;Batool Salehi;Stella Banou;Subhramoy Mohanti;Guillem Reus Muns;M. Belgiovine;P. Ganesh-P.-Gane
AirNN: Over-the-Air Computation for Neural Networks via Reconfigurable Intelligent Surfaces
- DOI:10.1109/tnet.2022.3225883
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Sara Garcia Sanchez;Guillem Reus-Muns;Carlos Bocanegra;Yanyu Li;Ufuk Muncuk;Yousof Naderi;Yanzhi Wang;Stratis Ioannidis;K. Chowdhury
- 通讯作者:Sara Garcia Sanchez;Guillem Reus-Muns;Carlos Bocanegra;Yanyu Li;Ufuk Muncuk;Yousof Naderi;Yanzhi Wang;Stratis Ioannidis;K. Chowdhury
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaushik Chowdhury其他文献
Kaushik Chowdhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaushik Chowdhury', 18)}}的其他基金
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
- 批准号:
2401047 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: MEDUSA: Mid-band Environmental Sensing Capability for Detecting Incumbents during Spectrum Sharing
合作研究:SWIFT:MEDUSA:用于在频谱共享期间检测现有企业的中频环境传感能力
- 批准号:
2229444 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: RFDataFactory: Principled Dataset Generation, Sharing and Maintenance Tools for the Wireless Community
合作研究:CCRI:新:RFDataFactory:无线社区的原则性数据集生成、共享和维护工具
- 批准号:
2120447 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
I-Corps: Smart Mask for Respiratory Monitoring and Prevention of Airborne Diseases
I-Corps:用于呼吸监测和预防空气传播疾病的智能口罩
- 批准号:
2042080 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
PFI:AIR-TT: DeepBeam: Wirelessly chargeable portable batteries through energy beamforming
PFI:AIR-TT:DeepBeam:通过能量波束成形进行无线充电的便携式电池
- 批准号:
1701041 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
WiFiUS: Coordinating US-Finland Collaboration on Wireless Research through WiFiUS PI Meetings
WiFiUS:通过 WiFiUS PI 会议协调美国-芬兰无线研究合作
- 批准号:
1644763 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Student Travel Support for ACM MobiHoc 2016
ACM MobiHoc 2016 学生旅行支持
- 批准号:
1631979 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
I-Corps: Software-Defined Distributed Wireless Charging
I-Corps:软件定义的分布式无线充电
- 批准号:
1644598 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CAREER: IDEA: Integrated Data and Energy Access for Wireless Sensor Networks
职业:IDEA:无线传感器网络的集成数据和能源访问
- 批准号:
1452628 - 财政年份:2015
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
EAGER: Network Protocol Stack for Galvanic Coupled Intra-body Sensors
EAGER:电流耦合体内传感器的网络协议栈
- 批准号:
1453384 - 财政年份:2014
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似国自然基金
含2,3-二氨基丁酸结构单元的天然产物发现及生物合成研究
- 批准号:22307129
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三种木兰科稀有药用植物与其内生菌中新颖萜类聚合物的发现及抗白血病活性研究
- 批准号:82373752
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于“效应成分-谱学/药效学/数学关联数据挖掘”整合的银柴胡质量标志物发现研究
- 批准号:82360769
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
PTEN-R173C突变体新功能的发现及其在肿瘤中的作用
- 批准号:82302931
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型四氢蒽醌类抗非小细胞肺癌先导化合物的发现及其克服EGFR抑制剂耐药作用机制的研究
- 批准号:82304322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ZeDiAx: Using zebrafish to discover how axons grow in diameter
ZeDiAx:利用斑马鱼发现轴突直径如何增长
- 批准号:
EP/Y029577/1 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Fellowship
Pioneering alpine epigenomics to discover adaptive genetic elements
开拓高山表观基因组学以发现适应性遗传元素
- 批准号:
DE240100184 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Discovery Early Career Researcher Award
NSFDEB-NERC: Machine learning tools to discover balancing selection in genomes from spatial and temporal autocorrelations
NSFDEB-NERC:机器学习工具,用于从空间和时间自相关中发现基因组中的平衡选择
- 批准号:
NE/Y003519/1 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Research Grant
Observations and methods to discover circumbinary planets
发现绕双星行星的观测和方法
- 批准号:
2886685 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Studentship
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
- 批准号:
10722515 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别: