Electronic Resonant Stimulated Raman Scattering Microscopy for Ultrasensitive Vibrational Imaging

用于超灵敏振动成像的电子共振受激拉曼散射显微镜

基本信息

  • 批准号:
    1904684
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Measurement and Imaging Program in the Division of Chemistry, Professor Wei Min of Columbia University is developing new measurement methods that have the potential to provide chemical information on individual molecules, the ultimate capability in measurement science. Raman spectroscopy and microscopy are popular tools for measuring chemical properties of molecules, as these tools enable research discoveries and chemical assessments, which are of value to industry, health care, materials and biological research, and environmental monitoring. However, conventional Raman methods are restricted, in that many molecules are required to generate a Raman signal sufficiently different from the background, which is referred to as the detection limit. Professor Min is improving the detection limit of Raman microscopy through an unprecedented approach, such that individual molecules can be chemically characterized on a routine basis, while present in a variety of chemical and biological environments. Professor Min and his team use this new form of Raman microscopy to simultaneously obtain images of many species found inside biological cells, as well as study the behavior of individual enzymes, thereby facilitating our understanding of the complex biological world. The Min group is leveraging their expertise in spectroscopy and microscopy to develop demonstrations and educational laboratory experiments that engage underrepresented minority students in local high schools and community colleges, with the goal being enhancement of student physical science skills and interest in future careers in science and engineering. The impact of these new instruments and labs is amplified by online dissemination through high-impact, internet-based instructional videos.Raman spectroscopy provides exquisite chemical information about molecular structure and dynamics resulting from interactions with the environment. Unfortunately, Raman signals are intrinsically weak in the optical far field. Although established near-field methods of surface-enhanced Raman spectroscopy can offer superb limits of detection, the strict reliance of near-field approaches on close interaction of target molecules with metallic nanostructures limits their application to a select group of chemical and biological systems. The project addresses the urgent need for ultra-low-limit-of-detection Raman microscopy, without relying on nanostructures. Professor Min and his team combine resonance Raman spectroscopy with stimulated Raman scattering microscopy to achieve ultra-low-limit-of-detection vibrational imaging. This enabling technology results from enhancement of the Raman scattering cross section by several orders of magnitude, due to the joint action of electronic resonant amplification and stimulated Raman amplification, making possible single-molecule limits of detection. Professor Min and his team employ the new ultra-low-limit-of-detection Raman microscopy method in multi-wavelength imaging of the interior of biological cells, as well as in mechanistic studies of single-molecule, enzyme-catalyzed biochemical reactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量和成像项目的支持下,哥伦比亚大学魏民教授正在开发新的测量方法,该方法有可能提供单个分子的化学信息,这是测量科学的终极能力。拉曼光谱和显微镜是测量分子化学性质的常用工具,因为这些工具可以实现研究发现和化学评估,这对工业、医疗保健、材料和生物研究以及环境监测具有价值。然而,传统的拉曼方法受到限制,因为需要许多分子才能产生与背景充分不同的拉曼信号,这被称为检测极限。敏教授正在通过前所未有的方法提高拉曼显微镜的检测限,以便可以对存在于各种化学和生物环境中的单个分子进行常规化学表征。敏教授和他的团队使用这种新型拉曼显微镜同时获取生物细胞内许多物种的图像,并研究单个酶的行为,从而促进我们对复杂生物世界的理解。 Min 集团正在利用他们在光谱学和显微镜方面的专业知识来开发演示和教育实验室实验,吸引当地高中和社区大学中代表性不足的少数族裔学生,目标是提高学生的物理科学技能和对未来科学和工程职业的兴趣。通过高影响力的基于互联网的教学视频进行在线传播,放大了这些新仪器和实验室的影响。拉曼光谱提供了有关与环境相互作用产生的分子结构和动力学的精致化学信息。不幸的是,拉曼信号在光学远场中本质上很弱。尽管已建立的表面增强拉曼光谱近场方法可以提供极好的检测限,但近场方法严格依赖目标分子与金属纳米结构的密切相互作用,限制了它们在一组选定的化学和生物系统中的应用。该项目解决了对超低检测限拉曼显微镜的迫切需求,而不依赖于纳米结构。敏教授和他的团队将共振拉曼光谱与受激拉曼散射显微镜相结合,实现超低检测限振动成像。由于电子共振放大和受激拉曼放大的共同作用,拉曼散射截面增强了几个数量级,从而使单分子检测极限成为可能。敏教授和他的团队采用新型超低检测限拉曼显微镜方法对生物细胞内部进行多波长成像,以及单分子、酶催化生化反应的机理研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strong Concentration Enhancement of Molecules at the Interface of Aqueous Microdroplets
水微滴界面分子浓度的强烈增强
  • DOI:
    10.1021/acs.jpcb.0c07718
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiong, Hanqing;Lee, Jae Kyoo;Zare, Richard N.;Min, Wei
  • 通讯作者:
    Min, Wei
Strong Electric Field Observed at the Interface of Aqueous Microdroplets
在水微滴界面处观察到强电场
  • DOI:
    10.1021/acs.jpclett.0c02061
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiong, Hanqing;Lee, Jae Kyoo;Zare, Richard N.;Min, Wei
  • 通讯作者:
    Min, Wei
Background-free imaging of chemical bonds by a simple and robust frequency-modulated stimulated Raman scattering microscopy
通过简单而强大的调频受激拉曼散射显微镜对化学键进行无背景成像
  • DOI:
    10.1364/oe.391016
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Xiong, Hanqing;Qian, Naixin;Zhao, Zhilun;Shi, Lingyan;Miao, Yupeng;Min, Wei
  • 通讯作者:
    Min, Wei
9-Cyanopyronin probe palette for super-multiplexed vibrational imaging
用于超级多重振动成像的 9-氰吡咯宁探针调色板
  • DOI:
    10.1038/s41467-021-24855-6
  • 发表时间:
    2021-07-26
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Miao Y;Qian N;Shi L;Hu F;Min W
  • 通讯作者:
    Min W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Min其他文献

Drawing Sound Conclusions from Noisy Judgments
从嘈杂的判断中得出合理的结论
Multiple time scale dynamics of distance fluctuations in a semiflexible polymer: a one-dimensional generalized Langevin equation treatment.
半柔性聚合物中距离波动的多时间尺度动力学:一维广义朗之万方程处理。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Pallavi Debnath;Wei Min;X. Xie;B. Cherayil
  • 通讯作者:
    B. Cherayil
KnowledgeGraph Individual Features Network Features Ensemble LearningAlgorithm Predictive Model Online BehaviorData Acquisition System Automated Feature Extraction Framework
知识图谱个体特征网络特征集成学习算法预测模型在线行为数据采集系统自动特征提取框架
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Min
  • 通讯作者:
    Wei Min
Vibrational Solvatochromism Study of the C-H···O Improper Hydrogen Bond.
C-H····O 不当氢键的振动溶剂变色现象研究。
Bioorthogonal chemical imaging of metabolic changes during epithelial–mesenchymal transition of cancer cells by stimulated Raman scattering microscopy
通过受激拉曼散射显微镜对癌细胞上皮-间质转化过程中代谢变化的生物正交化学成像
  • DOI:
    10.1117/1.jbo.22.10.106010
  • 发表时间:
    2017-10-17
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Luyuan Zhang;Wei Min
  • 通讯作者:
    Wei Min

Wei Min的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于磁共振新技术及多组学的胰腺癌生境图谱研究
  • 批准号:
    82330060
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
核磁共振研究ARAP3特异性识别底物Arf6及其ArfGAP活性调节的分子机制
  • 批准号:
    32371362
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向增强核磁共振波谱系统的频率捷变太赫兹回旋管小型化及频率一致性和功率稳定性研究
  • 批准号:
    62371092
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于Mie共振纳米盘的光子晶格中光子平带及其增强的二次谐波
  • 批准号:
    12374359
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于核磁共振与化学交联质谱整合的蛋白质动态结构表征新方法
  • 批准号:
    22374154
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Verification of the realizability of of a GHz-band stimulated resonant photon scattering experiment toward search for a dark energy source
验证 GHz 频段受激共振光子散射实验寻找暗能源的可实现性
  • 批准号:
    19K21880
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Dynamics of solution interface investigated by multiorder stimulated Raman scattering in colliding droplet
碰撞液滴中多级受激拉曼散射研究溶液界面动力学
  • 批准号:
    19K05391
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of terahertz source via stimulated resonant diffraction radiation
通过受激谐振衍射辐射开发太赫兹源
  • 批准号:
    16H05991
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Surface-emitting organic laser based on stimulated resonant Raman scattering
基于受激共振拉曼散射的表面发射有机激光器
  • 批准号:
    22550163
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an injectable and implantable microstimulator for neuromodulation and neuromuscular control
开发用于神经调节和神经肌肉控制的可注射和植入式微刺激器
  • 批准号:
    16100005
  • 财政年份:
    2004
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了