High Performance Laser Scribing of Advanced Thin Film Materials

先进薄膜材料的高性能激光划片

基本信息

  • 批准号:
    1903740
  • 负责人:
  • 金额:
    $ 29.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Thin film materials have broad application in electronics, light source, renewable energy, sensors, mechanical systems, etc. With the emergence of new thin film structures there is increasing demand for high performance laser scribing techniques capable of producing narrow ( 10 micron), straight walled cuts with little imparted surface damage. The research aims to address this challenge at the fundamental level by studying the laser-matter interaction mechanisms under a new laser double pulse irradiation strategy for thin film scribing. The basic research from this project will generate scientific knowledge to enable the development of high performance laser scribing techniques that can find application in numerous advanced technology areas including scribing of solar cells and smart window glass, patterning of flexible electronics, micromachining of microelectromechanical systems and light emitting diodes, etc. In the solar industry, for example, recent years have seen tremendous progress in thin film solar photovoltaics, especially perovskite solar cells exceeding 20 percent power conversion efficiency. The research could accelerate the adoption of thin film solar technology and contribute to a clean energy future free of air pollution, hazardous waste, and negative environmental impact. Besides potential industrial and societal benefits, engaging educational materials and activities derived from the project will be developed to train a diverse group of undergraduate and graduate students, and to educate both K-12 students and the public. The principle investigator will take advantage of the new laser micromachining infrastructure to involve students from underrepresented groups in the project. The research will verify that a femtosecond-picosecond double pulse irradiation will create a uniform critical electron number density through multiphoton absorption and avalanche ionization and enable a narrow thin film scribe with high surface integrity. The research objective is to identify the parameter window for pulse energy and time delay, and determine the laser-matter interaction mechanisms under this double pulse irradiation scheme. A combined experimental and numerical modeling approach will be used to verify the approach and to gain a deep understanding of electron dynamics and ablation mechanisms in a thin film structure when irradiated by a femtosecond-picosecond pulse train. The basic technical approach is to develop a numerical model to predict the free carrier density and the resulting ablation shape, while a model-based approach will be used to design and conduct thin film scribing experiments. This research will contribute to the scientific community by advancing the fundamental understanding of laser-matter interaction with advanced thin film materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
薄膜材料在电子、光源、可再生能源、传感器、机械系统等领域有着广泛的应用。随着新型薄膜结构的出现,对能够生产窄(10微米)、直线的高性能激光划片技术的需求不断增加壁状切口,几乎没有造成表面损伤。该研究旨在通过研究用于薄膜划片的新型激光双脉冲照射策略下的激光与物质相互作用机制,从根本上解决这一挑战。该项目的基础研究将产生科学知识,以促进高性能激光划片技术的发展,该技术可应用于许多先进技术领域,包括太阳能电池和智能窗玻璃划片、柔性电子器件图案化、微机电系统和光的微加工以太阳能行业为例,近年来薄膜太阳能光伏技术取得了巨大进步,特别是钙钛矿太阳能电池的功率转换效率超过了20%。该研究可以加速薄膜太阳能技术的采用,并为消除空气污染、危险废物和负面环境影响的清洁能源未来做出贡献。除了潜在的工业和社会效益外,还将开发源自该项目的教育材料和活动,以培训多样化的本科生和研究生群体,并教育 K-12 学生和公众。首席研究员将利用新的激光微加工基础设施,让来自代表性不足群体的学生参与该项目。该研究将验证飞秒-皮秒双脉冲照射将通过多光子吸收和雪崩电离产生均匀的临界电子数密度,并实现具有高表面完整性的窄薄膜划线。研究目的是确定脉冲能量和时间延迟的参数窗口,并确定双脉冲照射方案下的激光与物质相互作用机制。将使用实验和数值建模相结合的方法来验证该方法,并深入了解飞秒-皮秒脉冲串照射时薄膜结构中的电子动力学和烧蚀机制。基本技术方法是开发一个数值模型来预测自由载流子密度和由此产生的烧蚀形状,同时基于模型的方法将用于设计和进行薄膜划片实验。这项研究将通过推进对激光与先进薄膜材料相互作用的基本理解来为科学界做出贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical modeling and simulation of ultrafast laser-matter interaction with aluminum thin film
超快激光-物质与铝薄膜相互作用的数值建模与模拟
  • DOI:
    10.1016/j.procir.2022.08.152
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei, Shuting;Wang, Xinya;Larsen, Jon T.
  • 通讯作者:
    Larsen, Jon T.
Curved waveguides in silicon written by a shaped laser beam
由成形激光束写入的硅弯曲波导
  • DOI:
    10.1364/oe.419074
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Wang, Xinya;Yu, Xiaoming;Berg, Matthew J.;Chen, Pingping;Lacroix, Brice;Fathpour, Sasan;Lei, Shuting
  • 通讯作者:
    Lei, Shuting
A layer-by-layer quality monitoring framework for 3D printing
3D打印的层层质量监控框架
  • DOI:
    10.1016/j.cie.2021.107314
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Najjartabar Bisheh, Mohammad;Chang, Shing I.;Lei, Shuting
  • 通讯作者:
    Lei, Shuting
Laser Scribing of Photovoltaic Solar Thin Films: A Review
光伏太阳能薄膜激光划片:综述
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuting Lei其他文献

Positive- and negative-tone structuring of crystalline silicon by laser-assisted chemical etching.
通过激光辅助化学蚀刻对晶体硅进行正色调和负色调结构。
  • DOI:
    10.1364/ol.44.001619
  • 发表时间:
    2019-03-21
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Maxime Chambonneau;Xinya Wang;Xiaoming Yu;Qingfeng Li;D. Chaudanson;Shuting Lei;D. Grojo
  • 通讯作者:
    D. Grojo
Direct observation and quantification of nanosecond laser induced amorphization inside silicon
硅内部纳秒激光诱导非晶化的直接观察和定量
  • DOI:
    10.2351/7.0001305
  • 发表时间:
    2024-03-27
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Xinya Wang;Lanh Trinh;Xiaoming Yu;Matthew J. Berg;Sajed Hosseini;Brice Lacroix;Pingping Chen;Ruqi Chen;Bai Cui;Shuting Lei
  • 通讯作者:
    Shuting Lei
Sustainable Multifunctionality: Bio‐Inspired Printing of Nanocellulose Aerogel Acoustical Materials
可持续多功能性:纳米纤维素气凝胶声学材料的仿生印刷
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guang Yang;Amulya Lomte;Bhisham Sharma;Shuting Lei;Dong Lin
  • 通讯作者:
    Dong Lin
A two-step strategy for production of spherical non-aggregated multi-component particles by suspension-fed spray flame
通过悬浮喷射火焰生产球形非聚集多组分颗粒的两步策略
  • DOI:
    10.1016/j.proci.2024.105350
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Shuting Lei;Yiyang Zhang;Zhu Fang;Tianyi Wu;Xing Jin;Shuiqing Li
  • 通讯作者:
    Shuiqing Li
Numerical simulation and experimental investigation on friction and wear behaviour of micro-textured cemented carbide in dry sliding against TC4 titanium alloy balls
微织构硬质合金与TC4钛合金球干滑动摩擦磨损行为数值模拟及实验研究

Shuting Lei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuting Lei', 18)}}的其他基金

Collaborative Research: All-Optical Fabrication of Low-Loss, High-Index-Contrast, Silicon-in-Silicon Waveguides
合作研究:低损耗、高折射率对比度、硅中硅波导的全光学制造
  • 批准号:
    2128962
  • 财政年份:
    2021
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
Collaborative Research: All-Optical Fabrication of Low-Loss, High-Index-Contrast, Silicon-in-Silicon Waveguides
合作研究:低损耗、高折射率对比度、硅中硅波导的全光学制造
  • 批准号:
    2128962
  • 财政年份:
    2021
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
High Performance Machining of Brittle Materials by Controlled Crack Propagation
通过控制裂纹扩展对脆性材料进行高性能加工
  • 批准号:
    1537846
  • 财政年份:
    2015
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
Defect Free and Robust Microstructuring Using Femtosecond Axicon-lens-focused Beam (FAB) with Application Focus in Thin Film Solar Cell Manufacturing
使用飞秒轴锥透镜聚焦光束 (FAB) 实现无缺陷且稳健的微结构,重点应用于薄膜太阳能电池制造
  • 批准号:
    1131627
  • 财政年份:
    2011
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical Modeling and Experimental Study of Femtosecond Laser Machining of High Aspect Ratio Microstructures
合作研究:飞秒激光加工高深宽比微结构的数学建模和实验研究
  • 批准号:
    0826015
  • 财政年份:
    2008
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
CAREER: Design and Development of Novel Responsive Cutting Tools for Laser-Assisted Machining and Diagnosis of Structural Ceramics: A Research Integrated Education Career Landscape
职业:用于结构陶瓷激光辅助加工和诊断的新型响应切削工具的设计和开发:研究集成教育职业前景
  • 批准号:
    0134579
  • 财政年份:
    2002
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant

相似国自然基金

切削-激光冲击加工耐磨微织构化轴向柱塞泵的摩擦密封性能与效率优化
  • 批准号:
    52305464
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
激光光栅干涉六自由度位姿高速实时测量方法
  • 批准号:
    52305571
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于光纤端面介质膜技术的4-5μm全光纤高功率中红外激光器研究
  • 批准号:
    62375231
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于多能级跃迁平衡的高效率中红外光纤激光器研究
  • 批准号:
    62375201
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
熔石英元件表面缺陷前置修复结构激光加工机理及质量控制研究
  • 批准号:
    52305499
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase I: Multiple Access Laser Communication Terminals for Optical Orbital Hotspots
SBIR 第一阶段:用于光轨道热点的多址激光通信终端
  • 批准号:
    2319654
  • 财政年份:
    2024
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
CAREER: Advancing Laser Powder Bed Fusion with Non-Spherical Powder
职业:推进激光粉末床与非球形粉末的融合
  • 批准号:
    2339857
  • 财政年份:
    2024
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
System for 3D femtosecond laser-based micromachining
基于飞秒激光的 3D 微加工系统
  • 批准号:
    537273289
  • 财政年份:
    2024
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Major Research Instrumentation
High-power Ytterbium femtosecond laser amplifier system
高功率镱飞秒激光放大器系统
  • 批准号:
    532577495
  • 财政年份:
    2024
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Major Research Instrumentation
CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
  • 批准号:
    2339487
  • 财政年份:
    2024
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了