Effect of Hydrogen on the Properties of Fe alloys in the Earth's Core
氢对地核铁合金性能的影响
基本信息
- 批准号:1921298
- 负责人:
- 金额:$ 29.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For more than half a century, scientists have known that the Earth's core - the 3500-km large ball of mostly iron at the center of the planet - has a density 5-10% lower than that of pure iron. This is because the core contains light elements, such as Si, O, S, C, and H. While the core cools down forming the solid inner core, light elements segregate preferentially in the liquid outer core. This process powers in part the magnetic field which shields us from the solar wind. Furthermore, knowing the composition of the core is critical to constrain its formation and evolution. Light elements in metallic iron have, thus, been extensively studied at the extreme pressure and temperature conditions of the deep Earth. However, because of experimental limitations, the effect of hydrogen on core materials is still largely unknown. Here, the researchers investigate how hydrogen affect the properties of the core. Taking advantage of recent technical developments, they study the iron-hydrogen system at the high pressure and temperature of Earth's interior. The experiments, carried out at national synchrotron facilities, quantify the melting temperature and density of iron-rich alloys. Theoretical calculations at the atomic level guide the experimental approach and the data analysis. The results improve current models of the core with implications for the understanding of its formation, evolution and present-day magnetic field, with numerous ramifications in Earth Sciences. This two-year project provides support for an early-career female scientist and a graduate student, and training opportunities for undergraduate summer interns in state-of-the art Mineral Physics. It also increases the public awareness of the important role of hydrogen in the Earth through presentations during open-house events at Arizona State University.Here, the team investigates Fe-H, Fe-Ni-H and Fe-Si-H alloys in the laser-heated diamond anvil cell (DAC), where specimens are compressed at the tips of two opposing diamonds and heated by focused laser beams. Target pressures and temperatures are up to 150 GPa (~1.5 million atm) and in excess of 2000 K. Quantifying hydrogen-iron alloys at these conditions in the DAC has been challenging because H2 tends to break the anvils on heating. The team has recently demonstrated that this issue can be overcome by pulsed laser heating. This technique, coupled with an improved X-ray detection system at synchrotron facilities, allows the researchers to quantify in situ the effect of hydrogen on the structure, equation of state, bulk modulus and melting temperatures of iron-rich alloys. Run products are investigated by electron microscopy to study their texture and the partitioning of Si and Ni among the phases in presence. Ab initio calculations guide the experimental approach and the data analysis. The key questions leading the research are: (1) Does hydrogen change the crystal structures of iron metal and alloys in the Earth's core? What is the effect of hydrogen on (2) the equations of state of iron metal and alloys and (3) their melting temperatures at core conditions?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在半个多世纪的时间里,科学家们知道地球的核心 - 3500公里的大球主要是地球中心的铁 - 密度比纯铁的密度低5-10%。这是因为核心包含光元素,例如Si,O,S,C和H。当核心冷却形成固体内核时,在液体外核中优先隔离光元素。此过程在部分磁场上为我们避免了太阳风。此外,了解核心的组成对于限制其形成和进化至关重要。因此,金属铁中的光元素已在深地球的极端压力和温度条件下进行了广泛的研究。但是,由于实验局限性,氢对核心材料的影响仍然在很大程度上未知。在这里,研究人员研究了氢如何影响核心的性质。他们利用最近的技术发展,在地球内部的高压和温度下研究了铁氢系统。该实验在国家同步加速器设施进行,量化了铁富合金的熔化温度和密度。原子水平的理论计算指导实验方法和数据分析。结果改善了核心的当前模型,对理解其形成,进化和当今磁场的影响具有影响,并在地球科学中产生了许多影响。这个为期两年的项目为早期的女性科学家和研究生提供了支持,并为在最先进的矿物质物理学的本科暑期实习生提供了培训机会。它还通过在亚利桑那州立大学的开放式活动中的演讲来提高公众对氢在地球中的重要作用的认识。目标压力和温度高达150 GPA(约150万个ATM),超过2000K。在DAC中,在这些条件下量化氢铁合金是具有挑战性的,因为H2倾向于在加热时打破砧。该团队最近表明,可以通过脉冲激光加热来克服这个问题。该技术以及在同步器设施上改进的X射线检测系统的结合,使研究人员可以原位量化氢对结构,状态方程,块状模量和富含铁合金的融化温度的影响。 通过电子显微镜研究运行产品,以研究其质地和在存在各个相之间的Si和Ni分配。从头算计算指导实验方法和数据分析。引导研究的关键问题是:(1)氢是否会改变地球核心中铁金属和合金的晶体结构?氢对(2)铁金属和合金状态的方程是什么影响,以及(3)它们在核心条件下的熔融温度?该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的评估来评估值得支持的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of nickel on the high-pressure phases in FeH
- DOI:10.1103/physrevb.104.224106
- 发表时间:2021-12
- 期刊:
- 影响因子:3.7
- 作者:H. Piet;A. Chizmeshya;Bin Chen;S. Chariton;E. Greenberg;V. Prakapenka;S. Shim
- 通讯作者:H. Piet;A. Chizmeshya;Bin Chen;S. Chariton;E. Greenberg;V. Prakapenka;S. Shim
Stable hexagonal ternary alloy phase in Fe-Si-H at 28.6–42.2 GPa and 3000 K
Fe-Si-H 中稳定的六方三元合金相,在 28.6–42.2 GPa 和 3000 K 下
- DOI:10.1103/physrevb.105.104111
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Fu, Suyu;Chariton, Stella;Prakapenka, Vitali B.;Chizmeshya, Andrew;Shim, Sang-Heon
- 通讯作者:Shim, Sang-Heon
Hydrogen solubility in FeSi alloy phases at high pressures and temperatures
- DOI:10.2138/am-2022-8295
- 发表时间:2022-12-16
- 期刊:
- 影响因子:3.1
- 作者:Fu, Suyu;Chariton, Stella;Shim, Sang-Heon
- 通讯作者:Shim, Sang-Heon
Water‐Induced Diamond Formation at Earth's Core‐Mantle Boundary
地核-地幔边界处的水诱发钻石形成
- DOI:10.1029/2022gl098271
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Ko, Byeongkwan;Chariton, Stella;Prakapenka, Vitali;Chen, Bin;Garnero, Edward J.;Li, Mingming;Shim, Sang‐Heon
- 通讯作者:Shim, Sang‐Heon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sang-Heon Shim其他文献
Raman spectroscopy and x-ray diffraction of phase transitions in Cr 2 O 3 to 61 GPa
- DOI:
10.1103/physrevb.69.144107 - 发表时间:
2004-04 - 期刊:
- 影响因子:3.7
- 作者:
Sang-Heon Shim - 通讯作者:
Sang-Heon Shim
Sang-Heon Shim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sang-Heon Shim', 18)}}的其他基金
EA: Upgrade of the Laser Heating System in the High-Pressure Diamond-Anvil Cell Laboratory at Arizona State University
EA:亚利桑那州立大学高压金刚石砧室实验室激光加热系统升级
- 批准号:
2335071 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: From Silicate Melts Properties to the Dynamics and Evolution of an Early Basal Magma Ocean
合作研究:从硅酸盐熔体特性到早期基底岩浆洋的动力学和演化
- 批准号:
2153968 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Upgrade of the Raman Spectroscopy System at the High-Pressure Lab of Arizona State University
亚利桑那州立大学高压实验室拉曼光谱系统升级
- 批准号:
2140416 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Ingassing of Hydrogen in the Interiors of Sub-Neptunes and Gas Giants
亚海王星和气态巨行星内部的氢气吸收
- 批准号:
2108129 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant
Possible Storage of H2O in Mantle Ca(Ti,Si)O3 Perovskite
地幔 Ca(Ti,Si)O3 钙钛矿中 H2O 的可能储存
- 批准号:
2019565 - 财政年份:2020
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Effect of Hydrogen on the Sulfur-rich Martian Core
氢对富含硫的火星核心的影响
- 批准号:
2005567 - 财政年份:2020
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Calcium in Bridgmanite in the Deep Mantle
深部地幔布里奇曼石中的钙
- 批准号:
1725094 - 财政年份:2017
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Understanding the complexity of the 660-km seismic discontinuity
了解 660 公里地震间断面的复杂性
- 批准号:
1316007 - 财政年份:2012
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: Valence state of iron in the lower mantle
CSEDI合作研究:下地幔铁的价态
- 批准号:
1316022 - 财政年份:2012
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant
The Perovskite to Post-Perovskite Phase Boundary in Mantle Rocks
地幔岩石中的钙钛矿到后钙钛矿相边界
- 批准号:
1301813 - 财政年份:2012
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant
相似国自然基金
氢对钢铁微观缺陷结构及行为特性影响的原位电镜研究
- 批准号:52371122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
车用氢能对“资源-环境-经济”的影响机理及动态特性研究
- 批准号:52302427
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
压力积聚下马赫射流对复合储氢金属材料能量调控动力学特性影响
- 批准号:12272184
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
微型固态反应堆慢化剂高温释氢机理及其对寿期内堆芯核热力耦合特性的影响研究
- 批准号:12275219
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
微型固态反应堆慢化剂高温释氢机理及其对寿期内堆芯核热力耦合特性的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Effect of biofilm formation on multiphase flow and wetting properties during cyclic injection of hydrogen in rocks
岩石循环注氢过程中生物膜形成对多相流和润湿特性的影响
- 批准号:
2901554 - 财政年份:2024
- 资助金额:
$ 29.9万 - 项目类别:
Studentship
Deconvolution of Physicochemical Properties Contributing to Passive Diffusion of Depsipeptides
有助于缩酚肽被动扩散的物理化学性质的反卷积
- 批准号:
10607589 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Poly(ADP-ribose)-dependent TDP-43 pathology in oxidative stress (R21)
氧化应激中聚 (ADP-核糖) 依赖性 TDP-43 病理学 (R21)
- 批准号:
10753095 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Structural Biology and Computational Modeling Core
结构生物学和计算建模核心
- 批准号:
10513917 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Conformational properties of misfolded protein aggregates in cases involving the co-occurrence of prion disease and Alzehimer's disease or prion disease and CTE
涉及朊病毒病和阿尔茨海默病或朊病毒病和 CTE 同时发生的情况下错误折叠蛋白聚集体的构象特性
- 批准号:
10682584 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别: