SPX: Parallel Models and Algorithms for Emerging Memory Systems

SPX:新兴内存系统的并行模型和算法

基本信息

  • 批准号:
    1919223
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

With the advent of highly-parallel many-core (computing) machines, memory has increasingly become a limiting factor in continued performance improvement and scalability, in terms of energy usage, component density, latency, bandwidth, and reliability. To help deal with these and other problems, the semiconductor industry has been developing new byte-addressable nonvolatile random access memory (NVRAM) technologies. These offer the promise of significantly lower energy needs and higher density than standard dynamic random access memory (DRAM), while not losing their state on power loss. However, in NVRAM technology, operations that write to memory are more costly in terms of throughput and energy than operations that read from memory. This project is developing and testing new abstractions for emerging large and extreme-scale computer systems based on NVRAM, and how to effectively leverage this asymmetry for better performance in large computing systems. The focus will be on combining theory and practice, and considering issues across multiple levels of abstraction, from the hardware itself, to high-level algorithms and programming models. The project will include an educational component that will teach students about the new technology and how to effectively use it.The project consists of three main components: (1) developing methodologies for systems combining volatile and nonvolatile memory that allow individual processors to fail while permitting the overall system to continue correctly, (2) developing efficient algorithms and caching policies for settings where writes are more expensive than reads, and (3) developing techniques to take advantage of the significant computing capability in each memory controller. In the first component, the project is studying how to automatically convert arbitrary concurrent programs into a setting where processors can fail so that the overhead for both running the converted program and recovering from a failure is low. In the second component, the project is developing general purpose techniques to reduce the numbers of writes compared to reads, or reduce the fraction of the memory that needs to be written to, and applying the techniques across a broad class of algorithms. The research team will both develop theory and experimentally measure the effectiveness of these techniques and algorithms. In the third component, the project is looking at how to use the memory controllers to reduce the cost of fault tolerance and allow for weaker memory models, with the purpose of scaling to large systems. A key intellectual challenge is to ensure that the models, techniques, and algorithms are simultaneously simple, elegant, and practical.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着高度并行多核(计算)机器的出现,在能源使用、组件密度、延迟、带宽和可靠性方面,内存日益成为持续性能改进和可扩展性的限制因素。为了帮助解决这些问题和其他问题,半导体行业一直在开发新的字节可寻址非易失性随机存取存储器 (NVRAM) 技术。与标准动态随机存取存储器 (DRAM) 相比,它们有望显着降低能源需求并提高密度,同时不会因断电而丢失状态。然而,在 NVRAM 技术中,写入内存的操作在吞吐量和能源方面比从内存读取的操作成本更高。该项目正在开发和测试基于 NVRAM 的新兴大型和超大规模计算机系统的新抽象,以及如何有效地利用这种不对称性在大型计算系统中获得更好的性能。重点是将理论与实践相结合,并考虑多个抽象级别的问题,从硬件本身到高级算法和编程模型。该项目将包括一个教育部分,向学生传授新技术以及如何有效地使用它。该项目由三个主要部分组成:(1) 开发结合易失性和非易失性存储器的系统方法,允许单个处理器发生故障,同时允许整个系统正确地继续,(2)针对写入比读取更昂贵的设置开发有效的算法和缓存策略,以及(3)开发技术以利用每个内存控制器中的重要计算能力。在第一个组件中,该项目正在研究如何自动将任意并发程序转换为处理器可能发生故障的设置,以便运行转换后的程序和从故障中恢复的开销都很低。在第二个部分中,该项目正在开发通用技术,以减少与读取相比的写入次数,或减少需要写入的内存部分,并将这些技术应用于广泛的算法。研究团队将开发理论并通过实验测量这些技术和算法的有效性。在第三个组件中,该项目正在研究如何使用内存控制器来降低容错成本并允许较弱的内存模型,以扩展到大型系统。一个关键的智力挑战是确保模型、技术和算法同时简单、优雅和实用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallelism in Randomized Incremental Algorithms
  • DOI:
    10.1145/3402819
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Blelloch, Guy E.;Gu, Yan;Sun, Yihan
  • 通讯作者:
    Sun, Yihan
Writeback-Aware Caching
  • DOI:
    10.1137/1.9781611976021.1
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Beckmann;Phillip B. Gibbons;Bernhard Haeupler;Charles McGuffey
  • 通讯作者:
    Nathan Beckmann;Phillip B. Gibbons;Bernhard Haeupler;Charles McGuffey
Sage: Parallel Semi-Asymmetric Graph Algorithms for NVRAMs
  • DOI:
    10.14778/3397230.3397251
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laxman Dhulipala;Charles McGuffey;H. Kang;Yan Gu;G. Blelloch;Phillip B. Gibbons;Julian Shun
  • 通讯作者:
    Laxman Dhulipala;Charles McGuffey;H. Kang;Yan Gu;G. Blelloch;Phillip B. Gibbons;Julian Shun
Parallel block-delayed sequences
并行块延迟序列
Space and Time Bounded Multiversion Garbage Collection
  • DOI:
    10.4230/lipics.disc.2021.12
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Ben-David;G. Blelloch;P. Fatourou;E. Ruppert;Yihan Sun;Yuanhao Wei
  • 通讯作者:
    N. Ben-David;G. Blelloch;P. Fatourou;E. Ruppert;Yihan Sun;Yuanhao Wei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guy Blelloch其他文献

Guy Blelloch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guy Blelloch', 18)}}的其他基金

AF: Small: Shared-Memory Parallel Algorithms: Theory and Practice
AF:小型:共享内存并行算法:理论与实践
  • 批准号:
    1910030
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SHF: Medium: Algorithmic lambda-Calculus for the Design, Analysis, and Implementation of Parallel Algorithms
SHF:Medium:用于并行算法设计、分析和实现的算法 lambda 演算
  • 批准号:
    1901381
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
XPS: FULL: Bridging Parallel and Queueing-Theoretic Scheduling
XPS:FULL:桥接并行和排队理论调度
  • 批准号:
    1629444
  • 财政年份:
    2016
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
XPS: FULL: FP: Write-Efficient Parallel Algorithms for Emerging Memory Technologies
XPS:FULL:FP:用于新兴内存技术的写高效并行算法
  • 批准号:
    1533858
  • 财政年份:
    2015
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SHF: AF: Large: Collaborative Research: Parallelism without Concurrency
SHF:AF:大型:协作研究:无并发的并行性
  • 批准号:
    1314590
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
NSF Workshop on Research Directions in the Principles of Parallel Computing
NSF 并行计算原理研究方向研讨会
  • 批准号:
    1242283
  • 财政年份:
    2012
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SHF: AF: Small: Locality with Dynamic Parallelism
SHF:AF:小:具有动态并行性的局部性
  • 批准号:
    1018188
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
ITR/SY+IM+AP: Center for Applied Algorithms
ITR/SY IM AP:应用算法中心
  • 批准号:
    0122581
  • 财政年份:
    2001
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
ITR: Algorithms: From Theory to Application
ITR:算法:从理论到应用
  • 批准号:
    0085982
  • 财政年份:
    2000
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Advanced Languages for Scientific Computation Environments
科学计算环境的高级语言
  • 批准号:
    9706572
  • 财政年份:
    1997
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant

相似国自然基金

强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
  • 批准号:
    11805229
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

OAC Core: Transpass: Transpiling Parallel Task Graph Programming Models for Scientific Software
OAC 核心:Transpass:为科学软件转译并行任务图编程模型
  • 批准号:
    2349143
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Circuit maturation and function in postnatal primate retina
灵长类动物出生后视网膜的电路成熟和功能
  • 批准号:
    10642337
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Enhancing Drug Discovery Research by Free Energy Modeling
通过自由能建模加强药物发现研究
  • 批准号:
    10730788
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
SCH: Novel and Interpretable Statistical Learning for Brain Images in AD/ADRDs
SCH:针对 AD/ADRD 大脑图像的新颖且可解释的统计学习
  • 批准号:
    10816764
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Investigating interference-control in ADHD using a novel forced-response method
使用新颖的强制响应方法研究 ADHD 的干扰控制
  • 批准号:
    10591920
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了