Collaborative Research: Net-Shape and Scalable Additive Manufacturing for Thermoelectric Waste Heat Recovery Materials and Devices using Selective Laser Melting

合作研究:使用选择性激光熔化进行热电废热回收材料和设备的净形状和可扩展增材制造

基本信息

项目摘要

Over 55 percent of the energy consumed in the US is released as waste heat. For the manufacturing sector alone, the total unrecovered waste heat is estimated to be 2,500 trillion BTU per year. The waste heat from American automobiles is equivalent to losing over $50 billion each year. Among various waste heat recovery technologies, solid-state thermoelectric generators (TEGs) are a promising strategy to increase energy efficiency, alleviate air pollution, and reduce carbon emissions. Traditional TEG manufacturing includes material synthesis, module assembly, and device integration, which has low productivity and high cost. A widespread deployment of TEGs in existing energy systems can be achieved only by resolving following key challenges in TEG manufacturing: cost-effective synthesis of abundant, low cost, reliable, and high ZT (figure of merit) thermoelectric materials; scalable manufacturing of TEG devices; function graded realization in the temperature gradient environment. This project has an additive manufacturing (AM) based net-shape nanomanufacturing process, that takes the advantages of the latest advances in materials science, heat transfer, and manufacturing, to tackle these challenges. To accomplish this ambitious goal, an interdisciplinary team of energy harvesting, material scientist, heat transfer and manufacturing is assembled at Virginia Tech, Carnegie Mellon, and UW, in collaboration with an industry leader of AM. Students from diverse background will be trained for the twenty-first century workforce. Great efforts will also be made for outreaches to K12 students. The objective of this project is to develop a novel integrated nanomanufacturing process for high-performance thermoelectric materials and functional devices using the selective laser melting (SLM) based AM method. Furthermore, a correlation between the laser processing variables and thermoelectric material characteristics will be established to provide fundamental understanding of laser-material interactions to achieve a net-shape and scalable AM method for thermoelectric devices. Specifically, the following hypotheses will be tested: (1) The non-equilibrium conditions produced during the laser-based AM process can introduce numerous nano-defects, nanoscale particles, and abundant multi-scale grain boundaries, which can reduce the thermal conductivity dramatically by phonon scatterings. (2) doped Si or other nano-particles will be used as additive materials in the nanomanufacturing process to improve the mechanical properties, enhance the electrical conductivity, and increase the Seebeck coefficient. (3) The laser-based AM can readily realize the graded doping and variable cross-section areas along the length of the thermoelectric elements with temperate variance to make the best use of the temperature-dependent material properties for achieving high performance thermoelectric devices. (4) Using the laser-based AM, the direct manufacturing of thermoelectric materials, thermal insulation layers, electrical conductor layers, and heat exchangers as a functional and integrated energy harvesting system, can result in higher mechanical stability and thermal reliability as compared to the traditional manufacturing approaches. Characterized as low-cost, high-efficiency, and industry-scalable nanomanufacturing of clean energy systems, this technology, if successfully tested and validated, will become extremely attractive for many industries associated with energy and manufacturing systems, such as automobiles, power stations, steel plants and many more. Understanding the fundamentals of electron and phonon transport for thermoelectric materials, developing next generation manufacturing tools, and designing novel heat transfer systems will result in increased efficiency of the energy system and reduced of US dependency on foreign energy sources. The industrial partnership accelerates the assimilation of basic science research into industrial practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国消耗的能源的55%以上被释放为废热。仅对于制造业而言,未恢复的总废料估计为每年2500万亿BTU。美国汽车的废热等同于每年损失超过500亿美元。在各种废热技术中,固态热电发生器(TEGS)是提高能源效率,减轻空气污染和减少碳排放的有前途的策略。传统的TEG制造包括材料合成,模块组件和设备集成,其生产率低,成本高。只有解决TEG制造中的主要挑战:具有成本效益的丰富,低成本,可靠,可靠和高ZT(功绩图)热电材料的成本效益综合,才能解决现有能源系统中TEG的广泛部署; TEG设备的可扩展制造;功能在温度梯度环境中逐渐实现。该项目具有基于添加剂的制造(AM)净形纳米制造过程,该过程占据了材料科学,传热和制造业最新进展的优势,以应对这些挑战。为了实现这一雄心勃勃的目标,一个能源收获,材料科学家,传热和制造的跨学科团队由弗吉尼亚理工大学,卡内基·梅隆和UW组装,并与AM的行业领导者合作。来自不同背景的学生将接受二十一世纪劳动力的培训。对于K12学生的推广也将做出巨大的努力。该项目的目的是使用基于选择性的激光熔化(SLM)AM方法开发一种新型的集成纳米制造过程,用于高性能热电材料和功能设备。此外,将建立激光处理变量与热电材料特征之间的相关性,以提供对激光 - 材料相互作用的基本理解,以实现用于热电设备的净形状和可扩展的AM方法。具体而言,将测试以下假设:(1)基于激光器的AM过程中产生的非平衡条件可以引入许多纳米缺陷,纳米级颗粒和丰富的多尺度晶界,这可以通过声子散射大大降低热导电性。 (2)掺杂的SI或其他纳米粒子将在纳米制造过程中用作添加剂,以改善机械性能,提高电导率并提高Seebeck系数。 (3)基于激光的AM可以很容易地沿着温度差异的热电元素的长度沿热电元素的长度来实现分级的掺杂和可变的横截面区域,从而充分利用了与温度依赖性材料的特性,以实现高性能热电学设备。 (4)使用基于激光的AM,直接制造热电材料,热隔热层,电导体层和热交换器作为功能性和集成的能量收集系统,与传统制造方法相比,可以导致更高的机械稳定性和热可靠性。该技术以低成本,高效率和行业可观的纳米制造为特征,如果成功测试和验证,这项技术将对许多与能源和制造系统相关的行业非常有吸引力,例如汽车,电站,钢铁工厂等。了解热电材料的电子和声子传输的基本原理,开发下一代制造工具以及设计新型传热系统将导致能源系统的效率提高,并降低美国对外国能源的依赖。工业伙伴关系加速了工业实践中基础科学研究的同化。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响评估标准来评估值得支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling the selective laser melting-based additive manufacturing of thermoelectric powders
  • DOI:
    10.1016/j.addma.2020.101666
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Yongjia Wu;K. Sun;Shifeng Yu;L. Zuo
  • 通讯作者:
    Yongjia Wu;K. Sun;Shifeng Yu;L. Zuo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Zuo其他文献

Customer Arrival Event Processing on Computer Simulation for Discrete Event System
离散事件系统计算机仿真的顾客到达事件处理
  • DOI:
    10.4028/www.scientific.net/amm.513-517.2133
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Yao;X. Chen;Lei Zuo
  • 通讯作者:
    Lei Zuo
Oscillating surge wave energy converter using a novel above-water power takeoff with belt-arc speed amplification
  • DOI:
    10.1016/j.oceaneng.2024.118503
  • 发表时间:
    2024-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jia Mi;Jianuo Huang;Xiaofan Li;Alaa Ahmed;Lisheng Yang;Uihoon Chung;Raju Datla;Muhammad Hajj;Lei Zuo
  • 通讯作者:
    Lei Zuo
Wave devouring propulsion for stabilizing floating wind turbine platform: Experimental study
  • DOI:
    10.1016/j.oceaneng.2024.119799
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jingru Xing;Junxian Wang;Ashkan Matin;Ninad Prashant Vaidya;Liang Yang;Nicholas Townsend;Lei Zuo
  • 通讯作者:
    Lei Zuo
Improving Anticoagulant Treatment Strategies of Atrial Fibrillation Using Reinforcement Learning
使用强化学习改进心房颤动的抗凝治疗策略
Environment coupled piezoelectric galloping wind energy harvesting
环境耦合压电舞动风能采集
  • DOI:
    10.1016/j.sna.2021.112641
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ting Tan;Lei Zuo;Zhimiao Yan
  • 通讯作者:
    Zhimiao Yan

Lei Zuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei Zuo', 18)}}的其他基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
INFEWS US-China: Creating Ocean Wave Powered Resilient FEW Systems in Saline Coastal Regions
INFEWS 美中:在盐碱海岸地区创建海浪驱动的弹性 FEW 系统
  • 批准号:
    2246608
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
LEAP-HI: US-Ireland R&D Partnership: Control Co-Design for Ocean Wave Energy Conversion
LEAP-HI:美国-爱尔兰 R
  • 批准号:
    2152694
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: Net-Shape and Scalable Additive Manufacturing for Thermoelectric Waste Heat Recovery Materials and Devices using Selective Laser Melting
合作研究:使用选择性激光熔化进行热电废热回收材料和设备的净形状和可扩展增材制造
  • 批准号:
    2244686
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
INFEWS US-China: Creating Ocean Wave Powered Resilient FEW Systems in Saline Coastal Regions
INFEWS 美中:在盐碱海岸地区创建海浪驱动的弹性 FEW 系统
  • 批准号:
    1903627
  • 财政年份:
    2019
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    1935951
  • 财政年份:
    2019
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: Energy harvesting nanorods-enhanced MEMS temperature-insensitive gas sensor for combustion monitoring and control
GOALI:合作研究:用于燃烧监测和控制的能量收集纳米棒增强型 MEMS 温度不敏感气体传感器
  • 批准号:
    1508862
  • 财政年份:
    2015
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
GOALI: Energy Efficient and Reliable Motion Mechanism for Ocean Wave Energy Harvesting
GOALI:用于海浪能量收集的节能且可靠的运动机制
  • 批准号:
    1435867
  • 财政年份:
    2014
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Vibration Control of Tall Buildings Using Electricity Generating Tuned Mass Dampers
使用发电调谐质量阻尼器控制高层建筑的振动
  • 批准号:
    1529380
  • 财政年份:
    2014
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Self-powered Dual-mode Piezoelectric Resonant Pressure/Temperature Sensors for Oil and Gas Field Explorations
GOALI/合作研究:用于油气田勘探的自供电双模压电谐振压力/温度传感器
  • 批准号:
    1529842
  • 财政年份:
    2014
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant

相似国自然基金

CLSTN3β介导的内质网-线粒体协作调控白色脂肪细胞能量代谢改善肥胖的机制研究
  • 批准号:
    82300980
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
时间敏感型网络系统中面向确定性时延的端网协作传输机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
    72274225
  • 批准年份:
    2022
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Cortical Perineuronal Net Regulation of Maternal Caregiving Behaviors
合作研究:母亲护理行为的皮质神经周围网络调节
  • 批准号:
    2336907
  • 财政年份:
    2024
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cortical Perineuronal Net Regulation of Maternal Caregiving Behaviors
合作研究:母亲护理行为的皮质神经周围网络调节
  • 批准号:
    2336906
  • 财政年份:
    2024
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEO OSE Track 2: QGreenland-Net: Open, connected data infrastructure for Greenland-focused geoscience, and beyond
合作研究:GEO OSE 第 2 轨:QGreenland-Net:面向格陵兰岛地球科学及其他领域的开放、互联数据基础设施
  • 批准号:
    2324766
  • 财政年份:
    2024
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: QGreenland-Net: Open, connected data infrastructure for Greenland-focused geoscience, and beyond
合作研究:GEO OSE 第 2 轨:QGreenland-Net:面向格陵兰岛地球科学及其他领域的开放、互联数据基础设施
  • 批准号:
    2324765
  • 财政年份:
    2024
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Corporate Net Zero Goals for Decarbonization
合作研究:企业脱碳净零目标
  • 批准号:
    2319901
  • 财政年份:
    2023
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了